
AFRL-IF-RS-TR-1998-1Ö5
Final Technical Report
June 1998

LANGUAGES, LIBRARIES AND PERFORMANCE
EVALUATION TOOLS FOR SCALABLE
PARALLEL SYSTEMS

Indiana University

Sponsored by
Defense Advanced Research Projects Agency
DARPA Order No. A067

19980727 186
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views and conclusions contained in this document are those of the authors and should not be
interpreted as necessarily representing the official policies, either expressed or implied, of the
Defense Advanced Research Projects Agency or the U.S. Government.

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

ROME RESEARCH SITE
ROME, NEW YORK

This report has been reviewed by the Air Force Research Laboratory, Information
Directorate, Public Affairs Office (IFOIPA) and is releasable to the National Technical
Information Service (NTIS). At NTIS it will be releasable to the general public,
including foreign nations.

AFRL-IF-RS-TR-1998-105 has been reviewed and is approved for publication.

APPROVED:
RAYMOND A. LIUZZI
Project Engineer

FOR THE DIRECTOR: r VWKJ* I / *-** ^

NORTHRUP FOWLER, III, Technical Advisor
Information Technology Division
Information Directorate

If your address has changed or if you wish to be removed from the Air Force Research
Laboratory Rome Research Site mailing list, or if the addressee is no longer employed by
your organization, please notify AFRL/IFTB, 525 Brooks Road, Rome, NY 13441-4505.
This will assist us in maintaining a current mailing list.

Do not return copies of this report unless contractual obligations or notices on a specific
document require that it be returned.

LANGUAGES, LIBRARIES AND PERFORMANCE EVALUATION TOOLS
FOR SCALABLE PARALLEL SYSTEMS

Dennis Gannon
Allen Malony
Michael Wolfe

Contractor: Indiana University
Contract Number: F30602-92-C-0135
Effective Date of Contract: 13 August 1992
Contract Expiration Date
Program Code Number:
Short Title of Work:

Period of Work Covered:

13 August 1997
A0670001
Languages, Libraries and Performance
Evaluation Tools for Scalable Parallel
Systems
Aug 92 - Aug 97

Principal Investigator:
Phone:

AFRL Project Engineer:
Phone:

Dennis Gannon
(812)855-5184
Raymond A. Liuzzi
(315)330-3577

Approved for public release; distribution unlimited.

This research was supported by the Defense Advanced Research
Projects Agency of the Department of Defense and was monitored by
Raymond A. Liuzzi, AFRL/IFTB, 525 Brooks Road, Rome, NY,
13441-4505.

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704-0188

Public report™ burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing
the collection of information Send comments regarding this burden estimate or any other aspect ol this collection ol information, including suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information

Operations and Reports 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 222024302, and to the Office of Management and Budget, Paperwork Reduction Protect 10704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE

June 1998

3. REPORT TYPE AND DATES COVERED

Final Aug 92 - Aug 97
4. TITLE AND SUBTITLE

LANGUAGES, LIBRARIES AND PERFORMANCE EVALUATION TOOLS FOR
SCALABLE PARALLEL SYSTEMS
6. AUTHOR(S)

Dennis Gannon, Allen Malony, and Michael Wolfe

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Indiana University
Computer Science Department
Bloomington, Monroe County, IN 47405-4101

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESSES]

Defense Advanced Research Projects Agency Air Force Research Laboratory/IFTB
3701 North Fairfax Drive 525 Brooks Road
Arlington VA 22203-1714 Rome NY 13441-4505

5. FUNDING NUMBERS

C - F30602-92-C-0135
PE - 62301E
PR - A067
TA - 00
WU - 01

. PERFORMING ORGANIZATION
REPORT NUMBER

N/A

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

AFRL-IF-RS-TR-1998-105

11. SUPPLEMENTARY NOTES

Air Force Research Laboratory Project Engineer: Raymond A. Liuzzi/IFTB/(315) 330-3577

12a. DISTRIBUTION AVAILABILITY STATEMENT

Approved for public release; distribution unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

The primary objective of this project has been to develop a new programming language, compiler and programming
environment, called pC+ + , that is based on a simple extension to C+ + to support the development of software for
Massively Parallel Processing (MPP) computer systems. This tool supports a platform for parallel object-oriented software
capable of running without modification on all commercial Multiple-Instruction-Multiple-Data (MIMD) systems; an interface
to Single Program Multiple Data (SPMD) libraries such as ScaLapack++, A++ and POOMA; an interface to High
Performance Fortran (HPF); an interface to control-parallel C++-based languages such as CC+ + ; a way to exploit parallel
I/O systems and persistent object databases; and a complete programming environment. PC + + has been implemented on a
wide range of commercially available parallel systems including the Thinking Machines CM-5, the Intel Paragon, the SGI
PowerChallenge, the IBM SP-2 and the Cray T3-D. One of the most interesting by-products of the pC + + project has been a
language preprocessor toolkit called Sage+ +. This toolkit has been extended in a variety of ways and is used for a large
number of applications, including the TAU programming environment. There have been four major components to C + +
technology. The first component is the pC + + language. The mot important of these are applications that are part of the
NSF NCSA Alliance. The second component of technology is the Sage+ + compiler toolkit that was built for pC + +. The
third component of technology transfer is the Tulip runtime system, the ASCI Blue Mountain system. The fourth component
of the technology is the TAU programming environment tools and will be the standard foundation for HPC + + tools.

14. SUBJECT TERMS

Computers, Software, Programming, Parallel Systems

17. SECURITY CLASSIFICATION
OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION

OF ABSTRACT

UNCLASSIFIED

15. NUMBER OF PAGES

102
16. PRICE CODE

20. LIMITATION OF
ABSTFIACT

UL
Standard Form 298 (Rev. 2-89) (EG]
Prescribed by ANSI Std. 238.18
Designed using Perform Pro, WHS/DIOR, Oct 94

Contents

1 Introduction 4
1.1 Executive Summary 4

1.1.1 Project Accomplishments 5
1.1.2 The Tau Program Analysis Environment 7

1.2 Technology Transfer 9
1.3 The Remainer of This Report 10

2 pC++ 11
2.1 Introduction • 11
2.2 History 12
2.3 Overview of pC++ Version 2.0 13

2.3.1 pC++ Run-Time System 16
2.3.2 Tulip 17
2.3.3 I/O 18
2.3.4 Persistence 20

2.4 An Example: Parallel Sorting 22
2.5 The Polygon Overlay Program 27
2.6 The Self-Consistent Field Code 34

2.6.1 The pC++ Version of the SCF Code 35
2.6.2 Benchmark Results 37

2.7 The Particle Mesh Code 38
2.7.1 The Particle List Collection 38
2.7.2 The Mesh Collection 39
2.7.3 The Main Simulation Loop 40
2.7.4 Benchmark Results 41

3 Tau 43
3.1 Introduction 43
3.2 Design Requirements and Goals 44
3.3 TAU Overview 45

3.3.1 TAU Architecture 46
3.3.2 TAU Implementation 47
3.3.3 Global Features 48
3.3.4 Internal Tool Interfaces 48

3.4 TAU Tools 51
3.4.1 Static Analysis Tools 51
3.4.2 File and Source Code Browser 52
3.4.3 Callgraph Browser 52
3.4.4 Class Hierarchy Browser 52
3.4.5 Dynamic Analysis Tools 52
3.4.6 Program Instrumentation 53
3.4.7 Portable Profiling for pC++ 54

1/2

3.4.8 Event Tracing for pC++ 54
3.4.9 Barrier Breakpoint Debugging 55
3.4.10 Performance Extrapolation for pC++ 57

3.5 Tour de TAU: The Polygon Overlay Example 58
3.5.1 Utility Tools 60
3.5.2 Static Analysis Tools 62
3.5.3 Dynamic Analysis Tools 64
3.5.4 Performance Extrapolation 71

3.6 Critique 74
3.7 Conclusion and Future Work 76

1 Introduction

1.1 Executive Summary.

The primary objective of this project has been to develop a new programming
language, compiler and programming environment, called pC++, that would
be based on a simple extension to C++ to support the development of software
for Massively Parallel Processing (MPP) computer systems. More specifically,
the tool should support:

• a platform for parallel object-oriented software capable of running without
modification on all commercial Multiple-Instruction-Multiple-Data(MIMD)
systems;

• an interface to Single Program Multiple Data (SPMD) libraries such as
ScaLapack++, A++ and POOMA;

• an interface to High Performance Fortran (HPF);

• an interface to control-parallel C++-based languages such as CC++;

• a way to exploit parallel I/O systems and persistent object databases; and

• a complete programming environment including all the tools that users of
conventional C++ systems expect, as well as tools for parallel performance
analysis and debugging.

We do not think that pC++, or other object-oriented parallel programming
languages, should be viewed as replacements for Fortran 90 or HPF. Rather,
object-oriented parallelism should be used to express those types of parallelism
that cannot easily be expressed in these languages.

pC++ is based on a concurrent aggregate model of data parallelism. This
means that a pC++ program consists of a single main thread of control from
which parallel operations are applied to collections of objects. Each object in
a collection is an instance of an element class. pC++ has two basic extensions
to the C++ language: a mechanism to describe how operations can be invoked
over a set of objects in parallel, and a mechanism to refer to individual objects
and subsets of objects in a collection.

pC++ has been implemented on a wide range of commercially available
parallel systems including the Thinking Machines CM-5, the Intel Paragon, the
SGI PowerChallenge, the IBM SP-2 and the Cray T3-D. Our primary experi-
ence with testing the pC++ ideas on large scale problems has come from our
involvement with the NSF Grand Challenge Cosmology Consortium GC3. This
report describes some of these applications.

One of the most interesting by-products of the pC++ project has been a
language preprocessor toolkit called Sage++. This toolkit has been extended in

a variety of ways and is used for a large number of applications, including the
TAU programming environment described in the next section of this report.

Most of the key ideas and technology developed for pC++ has been inte-
grated in the DARPA HPC++ project which is described in the technology
transfer section of this report.

1.1.1 Project Accomplishments

In this section we describe the three primary technical accomplishments of this
project: the pC++ language and compiler, the Sage++ compiler technology
and the TAU programming environment.

The pC++ Compiler and Library Effort The final version of pC++ was
made available in Q4 of 1996 and it can be access by the World Wide Web at
ftp://ftp.extreme.indiana.edu/pub/sage/ in file pc++sage++2.0.tar.Z. This file
contains the entire distribution of all the software described here. In addition, a
Web based user's guide is available at http:// www.extreme. indiana.edu/sage/
pcxx-ug/pcxx_ug.html.

The compiler consists of a pC++ to C++ translator that works with any con-
ventional C++ system and our parallel runtime library TULIP. In other words,
pC++ programmers write pC++ parallel application code and the translator
converts their program files to a set of C++ program files that make calls to
our special parallel execution library. The system automatically compiles the
C++ programs and links the libraries.

pC++ programs are completely portable. That is, if a program is written
with pure pC++ it will compile for any of the parallel architectures supported
by the last release (SGI, Cray T3D, IBM SP2, Intel Paragon, TM CM-5). Fur-
thermore the performance of a well tuned pC++ program matches HPF and
Fortran plus message-passing.

Example Performance Results pC++ has been tested on a number of ex-
amples. However, one of the most impressive examples was a simulation of
the collision of two Galaxies involving an N-Body computation with 40 mil-
lion bodies. This project was awarded the prize for "Best Demonstration of
Heterogeneous Computing" at the I-Way demonstration at Supercomputing 95.

The core of this computation was a parallel simulation designed as part
of the GC3 NSF Grand Challenge Project. The simulation, known as a Self
Consistent Field (SCF) computation was written in pC++, CM Fortran and
Fortran+MPI. For the large simulation the pC++ and Fortran+MPI versions
were linked together over two supercomputers with 512 processors each. To
illustrate the scalability of pC++ performance we tested the pC++ SCF code
on a smaller example data set on a number of different machines.

Our experiments with the pC++ SCF code were conducted on a Thinking
Machines CM-5, an Intel Paragon, an SGI Power Challenge, an IBM SP-2, and

Platform
Number of Processors

8 16 32 64
Cray T3D 223.0 115.3

Intel Paragon 667.3 332.5 168.5
IBM SP-2 186.9 103.5

Power Challenge 116.9 58.6
CM-5 (pC++) 45.8

CM-5 (CM Fortran) 50.3

Table 1: SCF code execution time, in seconds, for evolving a 51,200 particle
stellar system for 100 time steps.

a Cray T3D. For comparison, we also ran the CM Fortran SCF code on the
CM-5. 51,200 particles were used for the simulation. The system was allowed
to evolve for 100 time steps. The results of these experiments are listed in the
table below for the five different platforms and three configurations of numbers
of processors. (In some cases, only smaller numbers of processors were available.
In other cases, only 64 processors were available.)

The Sage++ Compiler Tools The Sage++ compiler tool kit is one of the
most important technology spin-off products of this contract. It is now widely
used in university research as well as commercial products (see technology trans-
fer.)

Sage++ consists of a set of tools to translate Fortran, C++, pC++ and
Corba IDL programs into a C++ object tree form. It is then possible for a
programmer to write a tool that can read this object tree representation, analyze
it, transform it, and then translate the modified object tree back into the original
source language. The object tree representation of a program contains complete
information about program variables and types as well as all statements and
expressions. Consequently, tools that are built with Sage++ have complete
access to the semantics of the program and can modify them in any way.

The types of applications that have been built with Sage++ include the
following major efforts.

• the pC++ compiler.

• the Argonne Fortran-M parallel programming system.

• the INRIA (France) Fortran-S parallel Fortran system.

• the TAU programming environment (see below).

• the Argonne ADIC C program Automatic program differentiation system.

6

• the Syracuse HPF compiler.

• the NASA AIMS parallel performance tools system.

• the PARDIS parallel CORBA system.

All of these systems are currently in public distribution. In addition, IBM
has licensed the Sage++ software for use in internal research projects and two
small companies have acquired licenses to distribute sage as part of commercial

products.
The complete source code directory for Sage++ can be found in the pC++

distribution pc++sage++2.0.tar.Z described in the previous section. In addi-
tion, a complete, interactive users guide is available on line at http://www.extreme.indiana.edu/sage/sagexx.

html/sagexx_ug_toc.html.
However, two years of use has demonstrated to us the need for a number

of important improvements in Sage. In collaboration with Caltech, we have
undertaken a complete redesign of Sage++. The new system, Sage2 will be
based on a commercial C++ front-end provided by Edison Design Group, Inc.
(EDG). We expect that the resulting system will be a standard for the design of
programming tools for C++, Fortran, Java and CORBA IDL. This is discussed
in greater detail in the Technology Transfer section of this report.

The Tulip Runtime System Tulip a parallel run-time system (RTS) that
is used as part of the pC++ parallel programming language. The RTS has
been implemented on a variety of scalable, MPP computers including the IBM
SP2, Intel Paragon, Meiko CS2, SGI Power Challenge, and Cray T3D. This
system differs from other data-parallel RTS implementations; it is designed
to support the operations from object-parallel programming that require re-
mote member function execution and load and store operations on remote data.
The implementation is designed to provide the thinnest possible layer atop the
vendor-supplied machine interface. That thin veneer can then be used by other
run-time layers to build machine independent class libraries, compiler back ends,
and more sophisticated run-time support. Tulip is now the standard runtime
system being used in pC++ and it is also the basis for the HPC++ runtime
layer.

Tulip is now a major component of the DOE ASCI effort (See Technology
Transfer section below.)

1.1.2 The Tau Program Analysis Environment

TAU (Tuning and Analysis Utilities) is a visual programming and performance
analysis environment for pC++. Elements of the TAU graphical interface repre-
sent objects of the pC++ programming paradigm: collections, classes, methods,
and functions. These language-level objects appear in all TAU utilities. TAU

uses the Sage++ toolkit as an interface to the pC++ compiler for instrumenta-
tion and accessing properties of program objects. TAU is also integrated with
the pC++ runtime system for profiling and tracing support. TAU is imple-
mented in C and C++ and is using Tcl/Tk for graphics.

The TAU tools are implemented as graphical hypertools. While they are
distinct tools, they act in concert as if they were a single application. Each tool
implements some well-defined tasks. If one tool needs a feature of another one,
it sends a message to the other tool requesting it (e.g., display the source code
for a specific function). This design allows easy extensions.

We tried to make the TAU tool-set as user-friendly as possible. Many ele-
ments of the graphical user interface are analogous to links in hypertext systems:
clicking on them brings up windows which describe the element in more detail.
This allows the user to explore properties of the application by simply interact-
ing with elements of most interest. The TAU tools also support global features.
If a global feature is invoked in any of the tools, it is automatically executed
in all currently running TAU tools. Examples of global features include select-
function, select-class, and switch-application. TAU also includes a full hypertext
help system.

The components of TAU include

• TAU (TAU Main Control Window) It allows you to start the other tools,
provides on-line, hyper-text help and some global functionality like loading
another .dep file (the internal program tree form for pC++ programs).

• COSY (COmpile manager Status displaY) This tool provides a user-
friendly and convenient way of compiling and executing pC++ programs.
Through a graphical interface, the user can first select the parallel machine
on which the given application is to be compiled and run. Parameters and
options for the compilation process (e.g., compile for tracing) and for the
program run (e.g., activated event classes for trace recording) can be cho-
sen through pull-down menus. Cosy automatically connects, if necessary,
to the remote machine, executes the appropriate commands, and displays
the resulting output in a scrollable window.

• FANCY (File ANd Class displaY) lets you browse through the files and
classes used in the source text of the application, and lets you display the
source text of functions, methods, or classes.

• CAGEY (CA11 Graph Extended displaY) lets you browse through the
static callgraph of the application.

• CLASSY (CLASS hierarchY browser) displays the class hierarchy defined
in the current user application.

• RACY (Routine and data ACcess profile displaY) is a parallel profile data
viewer. After compiling an application for profiling and running it, racy
lets you browse through the function and collection profile data generated.

• SPEEDY (Speedup and Parallel Execution Extrapolation DisplaY) is a
graphical interface to the pC++ simulation environment XtraP. It allows
performance analysis and extrapolation of pC++ programs based on ex-
ecution traces.

• BREEZY (BReakpoint Executive Environment for visualization and data
displaY) is for breakpoint-based program analysis. Breezy allows a user
to control the execution of a pC++ program and to view the parallel
program collection data during the execution, the essential functions of a
parallel debugger. The execution is controlled by manipulating program
breakpoints. At these breakpoints, the program data can be displayed in
a text window or visualized by a compatible visualization tool.

• CRAFTY (ContRol flow And FuncTion displaY) is a control flow graph
browser. The nodes of the graphs (conditionals and basic blocks) contain
the list of functions and methods which are called from this block. This
tool will also allow the graphical specification of instrumentation points
for profiling and tracing.

Tau source code is included with the current distribution of pC++. Com-
plete tutorial and user guide information is available from the pC++ distribution
and on line at http://www.cs.uoregon.edu/research/paracomp/proj/tau/.

1.2 Technology Transfer

There have been four major components to pC++ technology and all three are
being moved into wider distribution and evolution. The first component is the
pC-t—I- language. The transition from pC++ to a working HPC+-1- standard
has been a long goal of this effort and it is now a reality. Because the C++
language has evolved so much in the past year, it is now possible to do more
in C++ without many of the language extensions that exist in pC++. This
has simplified the design of HPC++ considerably. In fact, the primary data
structure of pC++, the collection class type, is now seen as a Parallel Standard
Library container class. We are in the process of converting many of the existing
pC++ applications to the HPC++ syntax. The most important of these are
applications that are part of the NSF NCSA Alliance which is funding the effort
to make pC++/HPC++ more widely used there.

The second component of technology is the Sage++ compiler toolkit that
was built for pC++. The Sage++ system has now been licensed by IBM corpo-
ration for internal research purposes. It has also been licensed by NASA Ames
research laboratories for distribution as part of their Ames performance analysis
tools. In addition, Amerinex corporation has licensed Sage++ for commercial
distribution as a component in their product line. Sage2 development is now
very active as part of the HPC++ project and it should be released by the

end of 1997. We expect that Sage2 will be even more widely used because it
incorporates an existing, commercial quality language parser for C++.

The third component of our technology transfer is the Tulip runtime system.
Tulip has now been adopted by the DOE ASCI program as one of the core
runtime kernels for the ASCI Blue Mountain system. Consequently, Tulip will
be an important component in software design for the stockpile maintenance
project. Because of this key role Tulip will play, Los Alamos has taken over the
maintenance of Tulip and is working with us on the integration of Tulip into
HPC++.

The fourth component of the technology is the TAU programming environ-
ment tools. TAU has now been integrated with the Portland Group Inc, HPF
compiler and will be the standard foundation for HPC++ tools. In fact the first
HPC++ versions of TAU are currently in Beta test mode.

1.3 The Remainer of This Report

The remainder of this report consists of two chapters which provide a de-
tailed discussion and analysis of the two primary deliverable technologies of this
project: pC++ and the associated performance analysis toolkit TAU. These
two chapters have been designed to be read as stand-alone documents. How-
ever, they are deeply connected. As an illustration of the use of PC++ we
have included in the first chapter a detailed solution of a problem known as the
polygon overlay problem. In the TAU chapter, we use this same computation
as part of our analysis of the effective use of the TAU tools. The TAU chapter
concludes with a assessment of the system at the time of the project completion.
It should be noted that TAU continues to evolve and later versions now address
many of the issues that are discussed in the assessment section.

A complete bibliography of related work appears at the end of this report.

10

2 pC++
pC++ is a data-parallel extension to C++ that is based on the concept of collec-
tions and concurrent aggregates. It is similar in many ways to newer languages
like ICC++, Amelia and C** in that it is based on the application of func-
tions to sets of objects. However, it also allows functions to be invoked on each
processor to support SPMD-style libraries and it is designed to link with HPF
programs. pC++ currently runs on almost all commercial massively-parallel
computers, and is being used by the NSF Computational Grand Challenge Cos-
mology Consortium to support simulations of the evolution of the universe.
In this chapter we describe the language and its performance on a variety of
problems.

2.1 Introduction
The goal of the pC++ project was to design a simple extension to C++ for
parallel programming that provides:

• a platform for parallel object-oriented software capable of running without
modification on all commercial MIMD systems;

• an interface to Single Program Multiple Data (SPMD) libraries such as
ScaLapack++ [8], A++ [21] and POOMA ;

• an interface to High Performance Fortran (HPF) [19];

• an interface to control-parallel C++-based languages such as CC++ [7] ;

• a way to exploit parallel I/O systems and persistent object databases; and

• a complete programming environment including all the tools that users of
conventional C++ systems expect, as well as tools for parallel performance
analysis and debugging.

We do not think that pC++, or other object-oriented parallel programming
languages, should be viewed as replacements for Fortran-90 or HPF. Rather,
object-oriented parallelism should be used to express those types of parallelism
that cannot easily be expressed in these languages. To accomplish this, pC++
exploits the two definining characteristics of object-oriented design: encapsula-
tion and inheritance.

pC++ is based on a concurrent aggregate model of data parallelism. This
means that a pC++ program consists of a single main thread of control from
which parallel operations are applied to collections of objects. Each object in
a collection is an instance of an element class. pC++ has two basic extensions
to the C++ language: a mechanism to describe how operations can be invoked
over a set of objects in parallel, and a mechanism to refer to individual objects
and subsets of objects in a collection.

11

pC++ has been implemented on a wide range of commercially available
parallel systems; we describe its performance on such platforms later in this
chapter. Other examples of pC++ programs and performance can be found in
[12, 13,10, 4,14]. Our primary experience with testing the pC++ ideas on large
scale problems has come from our involvement with the NSF Grand Challenge
Cosmology Consortium GC3. This chapter describes some of these applications.
We also discuss two libraries that support parallel I/O and persistent objects in
pC++ programs.

One of the most interesting by-products of the pC++ project has been a
language preprocessor toolkit called Sage++ [3]. This toolkit has been extended
in a variety of ways and is used for a large number of applications, including
the TAU programming environment described in the TAU Chapter.

2.2 History
In 1984, the parallel programming research group at Indiana University, working
with the Center for Supercomputing Research and Development (CSRD) at the
University of Illinois, developed an extension to the C programming language
called Vector Parallel C (VPC) [11]. VPC used parallel loops for spawning
new. threads of control, a vector notation similar to Fortran-90 for data-parallel
operations, and assumed a shared memory model of execution.

By 1986, we had become interested in distributed memory multicomputers,
and decided to build a new system based on object-oriented design ideas. Our
goal was to implement parallel control mechanisms by applying member func-
tions to sets of objects. The first problem to be solved was how to describe a
generic set of objects in C++. At the time, the C++ template mechanism was
not yet a complete proposal to the C++ standards committee, although early
public documents such as [31] guided our thinking.

Even had they existed, templates would not have solved all of our problems.
To see why, consider the following definition of a set of objects of type T derived
from a templatized container class Set:

Set<T> S;

Suppose that the set element type T takes the form:

class T {
public:
void fooO;

};

Our desire was to be able to apply the member foo() to the entire set S in
parallel with the expression S.foo(). Unfortunately, this could not be done
using the standard overloading and inheritance mechanisms of C++. Further-
more, because there were no implementations of templates in C++ at that
time, we decided to add an extension to pC++ to represent a type of class

12

called a collection. Each collection had one built-in "template" parameter called
Element Type. To simplify the compiler, we put the mechanisms for managing
a distributed set of elements into a library called the SuperKernel collection.
The way in which these collection classes are used is described in detail in the
next section.

About the time that our first implementation of pC++ for shared-memory
multiprocessors was complete, the HPF Forum was being established. Because
HPF was also a data-parallel programming language, we were convinced that we
needed to base the allocation and data distribution mechanisms for collections
on distributed memory systems on the HPF model. Such a design would help
make it possible to share distributed data structures with HPF implementations
(although this idea has never been tested). In retrospect, we have realized that,
for most users, a standard interface to single-node Fortran-90 is more important
than compatibility with HPF. This is because the majority of large pC+-l- ap-
plications that are in production use are written with Fortran subroutines that
have been scavenged from older sequential and vector versions of the application.

In 1992, ARPA provided the support for a complete redesign of pC+-|- and a
public release. The final version of pC++ (version 2.0) will be released in early
1996. This chapter describes this new version of the language.

2.3 Overview of pC++ Version 2.0

pC++ was designed to work on both multiprocessors and multicomputers. We
use the HPF model to describe the way in which an array-like data structure
can be distributed over the memory hierarchy of a parallel computer. To build
a collection of objects from some class type T, which is called an element class1

in pC++, one needs a distribution and an alignment object. The distribution
object defines a grid and a mapping from the grid to the physical processors
on a parallel machine. The alignment object specifies the shape, size, and the
mapping of the element objects to the grid points. In addition, a processor
object of type Processors is needed to represent the set of processors available
to use. For example:

Processors P;

Distribution D(100, &P, BLOCK);

Align A(20, " [ALIGN(X[i] , D[i+10])] ") ;

creates an one-dimensional grid of a size of 100 which is mapped to the processors
of the machine by blocks. If there are 20 processors, grid positions 0 through
4 are mapped to processor 0, positions 5 through 9 are mapped to processor
1, etc. The alignment object aligns the logical vector X[0:19] with the grid
positions D [10:29] .

Given a distribution, an alignment and the class type of the element objects,
it is easy to build a collection. The starting point is the SuperKernel collection

1In its current implementation, elements of a collection must be of the same type.

13

provided by the pC++ collection library. This collection is the base type for
all other collections. It builds arrays of element objects and provides a global
name space for the element objects. Thus, the declaration:

SuperKemeKT> MyCollection(&D, &A);

creates a collection called MyCollection, consisting of a set of 100 objects of
type T distributed in the manner described above.

The most important feature of a collection is the ability to apply a function
in parallel across all the element objects. For example, if T is defined as:

class T{

public:

void foo();

int x, y, z;

float bar(T &);

}:

a parallel application of f oo() to all elements of MyCollection would take the
form:

MyCollection.foo();

In the case above, f oo() has a void result, so the expression MyCollection. foo ()
has a void result as well. However, pC+4- extends the type system so that, for
example, if x is a type int data member of the element class, then MyCollection. x
is an object of type SuperKernel<Int>, where Int is a library class with one
integer value. The expression:

MyCollection.x = 2*MyCollection.y + MyCollection.z;

is therefore a parallel computation involving element-wise multiplication, addi-
tion and assignment on the members of each element of the collection.

Similarly, if t is of type T the expression MyCollection.bar(t) applies
bar (t) to each element of the collection. The result is of type SuperKerneKFloat>.
Also, if C is another collection whose size is the same as MyCollection and whose
element type is T, the expression

MyCollection.bar(C)

will apply bar () to the ith element of MyCollection using the ith element of C
as an argument.

It is often the case that an operation must be applied to a subset of the
elements of a collection. pC++ extends the Fortran-90 vector notation so that
descriptors of the form base:end:stride can be used to select elements from
a collection. For example:

MyCollection[0:50:2] .fooQ

14

will apply f oo () to the first 25 even numbered elements of the collection.
To access an individual member of a collection, one can use the overloaded

operator () which returns a global pointer to an element, i.e. a pointer that can
span the entire address space of a distributed-memory machine. For example:

MyCollection(i)

returns a global pointer to the ith element in the collection. In this way, any
object can have a global address. The function call:

MyCollection(i)->fooO;

is a remote invocation. It sends a message to the processor that contains the zth

element of MyCollection, and a thread on that processor executes the function2

Programmers often need to create specialized collections with properties
appropriate for their particular applications. The task of building a new derived
collection is almost the same as building a derived class in C++. The definition
of a collection derived from SuperKernel takes the form:

Collection MyCollectionType: SuperKernel {
public:
// Public data members duplicated on each processor.
// Public member functions executed in parallel on all processors.

MethodOfElement:
// Data members and member functions here are added to
// the element class.

};

There are two types of data and member functions in a collection definition.
Data and functions labeled as MethodOf Element represent new data members
and functions that are to be added to each element class. Such member func-
tions are invoked and executed in the same way that ordinary element class
member functions are invoked and executed. Data members not labelled as
MethodOfElement are defined once on each processor; functions not labeled
MethodOf Element are invoked in "SPMD" mode. This is similar to the extrin-
sic function execution model in HPF. More precisely, pC++ has a single sequential
thread of control for all operations other than collection member function calls.
Collections are data aggregates that may be distributed over multiple address
spaces. Invoking a collection member function that is not a MethodOfElement
member causes a thread of control in each address space to execute the function.
These new threads of execution are independent and run in parallel. The pro-
grammer is free to embed explicit communication and syncronization in these
functions. The functions are barrier synchronized before control is returned
to the single sequential main thread. On distributed memory systems, where
there is one processor per address space, the number of threads that are run-
ning concurrently in a non-MethodOfElement call is one per processor. For

2Remote invocation of this kind is part of pC++ 2.0, and is not part supported by the
current pC++ 1.0 distribution.

15

MethodOf Element function calls there is one function invocation per element in
the collection.

2.3.1 pC++ Run-Time System

pC++ is extremely portable. It currently runs on the Cray T3D, IBM SP2, In-
tel Paragon, Meiko CS-2, SGI Power Challenge, TMC CM5, Convex Exemplar,
and networks of workstations. The key to this portability is the simple execu-
tion model and layered run-time system. The first run-time layer is machine
independent and is defined by the pC-t—f- compiler (source-to-source translator).
The compiler generates calls to the C++ class library whose interface is defined
in kernel. h. There are two versions of this class library layer: one for SPMD
execution and one for fork/join thread-based execution.

For distributed memory machines, SPMD execution is used, and the pC++
compiler converts parallel invocations such as:

MyColl.fooO;

into loops over the local collection elements using the "owner computes" rule as
shown below. First the data type

MyCollection<T> MyColK . . .) ;

is converted by the compiler to an explicit C++ class

MyCollection.T MyColK. . .) ;

and the function invocation is converted into the loop

for (i= MyColl->FirstLocal(); i >= 0; i = MyColl->NextLocal(i))
HyColl(i)->foo();

pcxx_Barrier();

The generated loop uses the overloaded () operator, provided by the pC++
class library, to find the ith collection element. After each processor has applied
foo() to its local elements, a barrier synchronization between processors in
initiated.

Shared memory machines can use the SPMD model shown above, or the
pC++ compiler can generate a special thread-based run-time interface. More
specifically, the loop above now takes the following abstract form. Let us assume
that there are k processors available

fork_threads(k); // create or allocate k threads of execution
// each thread executes the following
int s = MyColl->size(), me = my_thread_id();
for(int i = (s/k)*me; i < min(s, (s/k)*(me+l)); i++)

MyColl(i)->foo();
join_threads(k); // wait for all thread to reach this point

// and terminate or suspend all but one.

16

The abstraction of work is sufficiently general to permit many different thread
packages. An implementation could create a new thread for each element, i.e.
let k = s, or use a set of k persistent threads.

2.3.2 Tulip

The next portion of the run-time system is the low-level machine-dependent
layer, called Tulip. Tulip describes an abstract machine, and defines standard
interfaces for basic machine services such as clocks, timers, remote service re-
quests, and data movement. Tulip has a C interface, and has no knowledge of
pC++ or the class library, which are built on top of Tulip. Therefore, wherever
Tulip can be ported, pC+-f- can run.

Tulip has several basic abstractions:

• Context: An address space. A Unix process on a symmetric multiprocessor
would be a single context. Lightweight threads share a context. A machine
such as the SP2 can support several contexts per node.

• LocalPointer. A simple, untyped, memory address. A LocalPointer is
valid only within the Context it was created.

• GlobalPointer. The tuple (Context, LocalPointer). A GlobalPointer uniquely
identifies any memory address in the computational hardware.

Those abstractions are used in the following basic functions:

tulip_Put(tulip_GlobalPointer_t destination, char »source,
int length, tulip_ACK_t »handle);

tulip_Get(char »destination, tulip_GlobalPointer_t source,
int length, tulip_ACK_t »handle);

tulip_RemoteServiceRequest(int context, char »buffer,
int length, tulip_ACK_t »handle);

Put () and Get () simply move data between contexts. They are very similar
to memcpy (), except destination and source are global pointers respectively. Fur-
thermore, an acknowledge handle is provided so the status of the data transfer
can be monitored. If the handle is NULL when the function is called, no ac-
knowledgment is done. The functions are non-blocking, so that they can be
easily integrated with user-level thread packages.

The remove service request mechanism provides asynchronous communica-
tion between contexts. It is particularly useful for bootstrapping, building re-
mote procedure execution for pC++ (see section Section 2.3), and transmitting
short control messages to other contexts.

The basic abstractions and functions are supported on three architectural
models: shared memory, message passing, and network DMA.

17

The SGI Challenge and Convex Exemplar are examples of shared memory
machines. The hardware maintains cache and memory consistency, and com-
munication is done by simply sharing pointers. In this case, Put() and Get()
need not be used, because those functions move data between contexts. On a
shared memory machine, there is usually only one context. However, if Put()
or Get() are used, they are simply a call to memcpyO followed by the TRUE
acknowledge handle.

Two examples of message passing machines are the Intel Paragon and IBM
SP2. Since Put() and Get() are one-sided communication primitives, and do
not require synchronization, either active messages or polling loops must be used
to detect when a data movement request arrives. For each Get(), a recv() is
posted for the anticipated data, then a data request message is sent to the
remote context (i.e. node). When the sender detects the data request message
during a message poll, the data is sent to the awaiting recv without a buffer
copy. Put() uses a similar mechanism, but requires an extra round trip to avoid
any buffer copies. If the message is sent to the remote context "eagerly", the
extra round trip latency is not incurred, but the messaging system must copy
and buffer the data.

The Meiko CS-2 and Cray T3D are network DMA machines. They are not,
from the programmers perspective, truly shared memory, since transfers to "re-
mote" memory must be done through special system calls. On the other hand,
there is no synchronization or polling required to move data. Consequently
Get() and Put() can be written as calls to these underlying vendor-supplied
transport functions.

For all machines, a polling loop or interrupt must be used to detect a remote
service request. Currently, Tulip uses a polling loop to detect requests. However,
as active message layers for machines such as the SP2 become available, Tulip
will be rewritten to take advantage of fast handlers and eliminate the need for
polling.

2.3.3 I/O

pC++/streams is a library which supports a simple set of high level I/O prim-
itives on pC++ collections. To illustrate its capabilities, we describe how
pC+-(-/streams can be used to checkpoint a collection having variable-sized
elements.

Assume our application simulates the behavior of particles in three-dimensional
space. We can model the particles with a one-dimensional distributed array of
variable-length particle lists, each of which keeps track of the particles in the
region of the three-dimensional array local to that processor.

class Position {
double x, y, z;

18

class ParticleList {

int numberOfParticles;

double * mass; // variable sized

Position * position; // arrays

};
Collection DistributedArray {

updateParticlesO;

}!

Processors P;
Align a(12,"[ALIGN(collection[i], template [i])]") ;
Distribution d(12, &P, CYCLIC);

DistributedArray<ParticleList> particleArray(&d,&a);

The programmer can write a function to checkpoint the particleArray collec-
tion as follows:

«include "pc++streams.h"
void saveParticleArrayO {

oStream streamed, fta, "myFileOne");
stream « particleArray;
stream.writeO ;

}

The first line of saveParticleArrayO defines an output pC++/stream called
stream, connected to the file myFileOne. The second line inserts the entire
particleArray collection into the buffers of the stream. The third line causes
those buffers to be written to the file, using parallel I/O. The file associated with
the stream is closed automatically when the program block in which the stream
was declared is exited. The programmer would write a function to restore the
checkpointed particleArray as follows:

void loadParticleArray() {
iStream streamed, &a, "myFileOne");
stream.read();
stream » particleArray;

}

pC++/streams also allows selective I/O on individual fields of collection ele-
ments:

stream « particleArray.numberOfParticles;

pC+-|-/streams supports I/O on collections with complex elements (e.g. variable-
sized elements, tree-structured elements, etc) by giving the programmer a straight-
forward mechanism for defining how these data structures are to be read and
written: stream insertion and extraction functions. A pC++/stream is actually
a collection of element-streams, one per element of the collection to be written

19

from or read into. An insertion or extraction function allows the programmer
to indicate exactly how data is to be exchanged between a given element-stream
and its corresponding element. In our example, the programmer would define
an insertion function for ParticleLists as follows:

declareStreamInserter(ParticleList &p) {
eltBuf « p.numberOfParticles;
eltBuf « arrayCp.mass, p.numberOfParticles);
eltBuf « array(p.position, p.numberOfParticles);

}

declareStreamlnserterO is a macro that defines eltBuf, a reference to
the element-stream. The arrayO macro tells pC++/streams that mass and
position are dynamically-allocated arrays of size numberOfParticles. Ex-
traction functions are defined similarly. pC++/streams is described in more
detail in [16].

2.3.4 Persistence

pC++/persistence is an I/O library supporting persistence for pC++ collec-
tions. This library is currently implemented using the SHORE persistent object
system from the University of Wisconsin-Madison [6].

Normally, elements of pC++ collections are transitory, i.e., their data dis-
appears when the program terminates. In order to preserve transitory data, the
programmer must output that data to a file before the program terminates, us-
ing either an I/O mechanism supported by the operating system or a higher-level
library such as pC++/streams.

pC++/persistence allows programmers to define persistent collections, whose
elements can contain persistent data in addition to ordinary transitory data.
The persistent section of each element is automatically preserved across pro-
gram executions; no application I/O code is required to save or load this data.
A transaction mechanism is supported, allowing programmers to checkpoint per-
sistent data with a single line of code that commits a transaction. In addition,
the persistent part of a collection is concurrently accessible by multiple pC++
programs, with no explicit code for communication required. Concurrent access
to persistent data can allow simplified programming of concurrent computation
and visualization, computational steering, and modular multi-disciplinary simu-
lations, since no application code needs to be devoted to I/O or communication
of the persistent data.

As an example, we first we define the per-element persistent data using SDL
(SHORE Data Language). For simplicity, our persistent data will consist of just
a single long integer per element, called myPersistentLong:

module MyElement {
interface PersistentElementData {

public:

20

attribute long myPersistentLong;

};
}

This SDL specification is processed by the SHORE SDL type compiler, inform-
ing SHORE of the structure of the persistent part of our elements.

We next define an element class MyElement in ordinary pC++. We derive
it from the class PersistentElement, and define an ordinary transient data
member (myTransientLong) in the usual way:

#include "PersistentElement.h"

class MyElement : public PersistentElement{
public:
long myTransientLong;
void P_initialize();
void helloO ;

};

The class PersistentElement contains a member P through which the persis-
tent part of each element is accessed:

void MyElement::hello() {
printfC Hello world: */.ld '/.Id",

myTransientLong, P->myPersistentLong);

}

The function P_initialize(), defined within MyElement, gives the application
programmer a mechanism for initializing the persistent part of each element.
P_initialize() is called immediately after the persistent part of each element
is first created.

void MyElement::P_initialize() {
P. update 0->myPersistentLong = 1234;

}

The call to P.update() above informs pC++/persistence that the persistent
part of the element is to be modified, rather than just accessed.

A persistent collection is defined just like an ordinary collection, except that
it is derived from PersistentCollection:

»include "PersistentCollection.h"

Collection MyCollection: public PersistentCollection {

public:

MyCollection(Distribution *T, Align *A,

char *persistentCollectionName);

MethodOfElement:

virtual void helloO;

};

21

MyCollection::MyCollection(Distribution *T, Align *A,
char *persistentCollectionName)

: PersistentCollection(T, A, persistentCollectionName) {}

When the programmer instantiates the collection X below, the string myPersistentCollectionName
is passed into the collection constructor, and then to PersistentCollection.
This string identifies a particular database of persistent elements to be associ-
ated with the collection.

void Processor_Main(int arge, char **argv){

Processors P;
Distribution T(SIZE, &P, BLOCK);

Align A(SIZE,"[ALIGN(V[i], T[i])]");
MyCollection<MyElement> X(&T, &A, "/myPersistentCollectionName");

beginTransactionO ;

X.helloO;
conunitTransactionO ;

}
Changes to the persistent part of a collection must be made within a transaction,
initiated by beginTransactionO. These changes do not become permanent
and are not visible to other applications until the transaction is committed
with a call to commitTransaction(). So to checkpoint the persistent part of a
collection, all that is required is a call to conunitTransactionO.

pC++/persistence is still under development at the time of the writing of
this text; some details may change and some functionality may be added before
the implementation is complete.

2.4 An Example: Parallel Sorting
To see how pC++ is used, consider the problem of sorting a large vector of
data using a parallel bitonic sort algorithm. A bitonic sequence consists of
two monotonic sequences that have been concatenated together where a wrap-
around of one sequence is allowed. That is, it is a sequence:

00,01,02,-- • ,°m

where m = 2n - 1 for some n, and for index positions i and j, with i < j,
di, ai+i,.. -, Oj is monotonic and the remaining sequence starting at a(j+1) mod n>
where a0 follows a„, is monotonic in the reverse direction.

Merging a bitonic sequence of length k involves a sequence of data exchanges
between elements that are Jfe/2 apart, followed by data exchanges between ele-
ments that are fc/4 apart, etc. The full sort is nothing more than a sequence of
bitonic merges. We start by observing that a set of two items is always bitonic.
Hence for each even i, the subsequence a{ and oi+i is always bitonic. If we merge

22

OOOOOOOOOOOOOOOO merge (0)
->■ «=— -> -c- _> <- _> <- grabFrom(l)

OOOOOOOOOOOOOOOO merged)
 —> , <—5= —> _, <—7~ grabFrom(2)

OOOOOOOOOOOOOOOO
-> -> <- <_ _> -> <_ <_ grabFrom(l)

OOOOOOOOOOOOOOOO merge(2)

 ~> ~ "^—. — grabFrom(4)

OOOOOOOOOOOOOOOO uc ,„,
 > > < < grabFrom(2)

OOOOOOOOOOOOOOOO
-:» -> -> -> <_ -=- <_ <- grabFrom(l)

OOOOOOOOOOOOOOOO merge(3)

OOOOOOOOOOOOOOOO

OOOOOOOOOOOOOOOO

grabFrom(8)

grabFrom(4)

grabFrom(2)

grabFrom(l)
OOOOOOOOOOOOOOOO

OOOOOOOOOOOOOOOO

Figure 1: Data exchanges in the Bitonic Sort Algorithm

these length two bitonic sequences into sorted sequences of length two and if
we alternate the sort direction, we then have bitonic sequences of length four.
Merging two of these bitonic sequences (of alternating direction) of length 4 we
have sorted sequences of length 8. The sequence of data exchanges is illustrated
in Figure 1.

In pC++, a pure data-parallel version of this algorithm can be built from
a collection List of objects of type Item as shown below. Each item contains
an object of type E which is assumed to be the base type of the list we want to
sort:

struct E {
public:
int key;

};
class Item {
public:
E a;

The List collection contains one public function sort() and a number of
fields and members that are denned in the MethodOf Element section. Because

23

the parallel algorithms require parallel data exchanges, we must have a tem-
porary tmp to hold a copy of the data to be exchanged for each element. In
addition, there are two flags, exchangeDirection and sortDirection which
are used to store the current exchange direction and the current sort order re-
spectively. As can be seen in figure Figure 1, the value of these flags depends
on the location of the element in the list as well as the point in time when an
exchange is made.

The pC++ definition of the List collection can be summarized as follows.

Collection List: SuperKernel {
public:
void sortO;
int N; // number of elements

MethodOfElement:
E tmp;
virtual E a;
int sortDirection, exchangeDirection;
void set_sort_direction (int k) { sortDirection = (indexl/k)'/.2; }

void set_exchange_direction(int k) { exchangeDirection = (indexl/k)'/.2; }

void merge(){
if (((sortDirection == exchangeDirection) kk (this->a.key > tmp.key)) II

((sortDirection != exchangeDirection) kk (this->a.key <= tmp.key))){

this->a = tmp;

}
}
void grabFrom(j){

if(exchangeDirection == 1) tmp = (*thisCollection)(indexl+j)->a;

else tmp = (*thisCollection)(indexl-j)->a;

}.
};

In general, MethodOf Element functions are those element-wise operations in
an algorithm that depend on the relation of one element to the whole collection
or to other elements in the collection. For example, the function grabFrom(int
j) is a method that, when applied to one element at position k, will access the
data in the element at position j+k.

The SuperKernel class provides two additional members, thisCollection
and index 1, which provide a pointer to the containing collection and the position
of the element in the collection, respectively. The function merge () uses the
current state variables sortDirection and exchangeDirection to determine
which element of the data to keep after the exchange step.

The sort() function is then a sequence of merge steps, each of which con-
tains a sequence of exchanges as shown below. The main program allocates a
list of items and then calls the sort function.

List::sort(){
int k = 1;

24

for (int i = i; i < log2(N); i++){ // merged) step
k = 2*k;
this->set_sort_direction(k);
for (int j = k/2; j > 0; j = j/2){ // exchange(j) step

this->set_exchange_direction(j);
this->grabFrom(j);
this->merge();

}
}

}

Processor_main(){

Processors P;

int N = read_problem_size();

Distribution D(N.&P,BLOCK);

Align A(N,"[ALIGN(X[i],D[i])]");

List< Item > L(&D, &A);

L.sortO ;

}
This version of the program works, but has a serious flaw. If the size of the

list to be sorted is N and there are only P « N processors in the system, the
bitonic sort has parallel complexity 0(^ log2 JV), which is far from optimal. To
improve the efficiency, we can build a hybrid algorithm as follows. Let us break
the list of N into P segments of length K = y. We begin the sort by applying
a quicksort to each segment, but sorting them in alternating directions. Now
each pair of adjacent sorted segments forms a bitonic sequence and we can apply
the bitonic merge as before. However, at the end of each merge step, the list in
each segment is only a bitonic sequence, not a sorted sequence. We must then
apply a local bitonic merge to sort it. If we rewrite the algorithm above with
a Segment class replacing the Item class and expanding the trap variable to an
array we only need to make a few modifications to the program. These changes,
shown below, consist of inserting the calls to the local quicksort and local bitonic
merge in the sort function. The grabFromO and merge() functions also need
to be replaced by ones that can accommodate an array.

// P is the number of elements (processors)
// N is the total number of elements to sort.
// K = N/P is the size of each segment.

class Segment{
public:

E a[K]
quickSortO; // 0(K log(K))
localBitonicMerge(int direction); // 0(K)

25

};

List::sort(){
int k = 1;
this->quickSort();
for (int i = 1; i < log2(P); i++){ // merge(i) step

k = 2*k;
this->set_sort_direction(k);
for (int j = k/2; j > 0; j = j/2){ // exchange(j) step

this->set_exchange_direction(j);
this->grabFrom(j);
this->merge();

}
this->localBitonicMerge(d);

}
}

void SortedList::grabFrom(int dist){
E *T;
int offset = (d2)? -dist: dist;
T = 6((*ThisCollection)(indexl+offset)->a[0]);
for(int i = 0; i < K; i++) tmp[i] = T[i];

}
void SortedList::merge(){

for (i = 0; i < K; i++)
if(((d == d2) && (a[i].key > tmp[i] .key)) ||

((d != d2) &fc (a[i].key <=tmp[i] .key))){
a[i] = tmp[i] ;

}
}

};

Assume that the quicksort computation runs with an average execution time
of DK log K for some constant D, that we can ignore the cost of the barrier
synchronization, that there are P = 2" processors available, and that the size
of the list to be sorted is N. The time to sort is then roughly:

T(N) = ^C log2 P + Dj log j + log P

where C is a constant that depends upon communication speed. Given a se-
quential complexity of DN log N we see that the parallel speed-up is of the
form:

p
Speedup(N, P) = ! , Clog2P

1 "*" D log N

which, for large N, approaches P.

26

This algorithm has been tested on a variety of machines and it is both
portable and fast. Sorting one million items takes 3.56 seconds on a 64 node
Paragon and 1.68 seconds on an 8 node SGI Challenge. However, comparing
this to the standard system routine qsort reveals that the speedup is not great.
On the same data set with one node of the SGI Challenge, qsort requires 10.21
seconds. Hence the speed-up of our algorithm is 6.08 on 8 processors. This
value matches the formula above when C = D.

2.5 The Polygon Overlay Program
The following algorithm is used to implement the polygon overlay code in pC++.
Given two maps A and B as input, map A is divided into smaller maps A,.
These smaller maps are then distributed over the elements of a pC++ collection.
If there are N polygons in map A to be divided and P collection elements,
then each element gets N/P polygons, except element zero, which gets N/P +
N mod P polygons (Figure 2).

Map B is duplicated in each element. During a parallel computation, each
element finds the overlay of map A3 and map B. In the output stage, the
resulting overlay map in each element is combined with the maps in the other
elements to form the final overlay map. No inter-element communication is
required during the parallel computation and thus the computation is carried
out in the "embarrassingly parallel" fashion. In this algorithm, map B is not
divided and distributed; if it were, it would be difficult for an As map to know
whether it overlaps with a Bs map which is in another element. A more elaborate
parallel algorithm would be required, and inter-element communication would
be unavoidable. We discuss this further later in this section.

The collection pC++ element class is defined as follows:

class Patch {
public:
polyVec_p leftVec, rightVec, outVec;
PatchO {}

}:
where leftVec, right Vec, and outVec are, respectively, pointers to map As,
map B, and their resulting overlay. The pC++ collection is defined as follows:

Collection Overlay : public SuperKernel {
public:
Overlay(Distribution *D, Align *A);

MethodOfElement:
virtual polyVec.p leftVec, rightVec, outVec;
void readMapO ;
void writeMapO;
void distributeMapO ;
void f indOverlayO;

};

27

6

5

25 30
16:

18

15
22

35

10

I 9 I \'
21

26

24

29

28

13

12 | 2°

19

23

34

27
32

31
33

Figure 2: Polygon map distribution scheme. This shows the distribution of
a map consisting of N = 35 polygons over P = 2 collection elements. The
polygons are numbered (sorted) according to the order used in the sequential
ANSI C implementation. With N/P = 17 and N mod P = 1, element 0 gets
the shaded polygons and element 1 gets the unshaded polygons. In the tests
reported in this paper, the load imbalance was found to be insignificant.

28

In this definition, readMapO inputs the two polygon maps. The actual read-
ing is carried out by collection element zero. After the two maps are read,
element zero calculates the number of polygons all other elements should have
and broadcasts the information. In distributeMapO, all other processors then
fetch their piece of the first polygon map and the entire second polygon map
from element zero, f indOverlay () finds the overlay of As and B maps. In its
pC++ implementation, f indOverlayO simply calls the original ANSI C poly-
gon overlay functions based on user-selected options. No modification of the
ANSI C code is needed, except in the case of a modified list-deletion algorithm
described in later in this section.

In writeMapO, element zero gathers overlay maps from all the elements. It
calls a sorting routine to sort the polygons in a special order and writes the entire
overlay map out. The sorting could have be done in parallel using the modified
bitonic merge sort described in (Section 2.7.1). However, since our focus was on
the parallelization of the polygon overlay algorithm itself, we did not parallelize
the sorting routine. The actual implementation of function f indOverlay () is
given in the following piece of code.

void Overlay: :findOverlayO

{
double time;
pcxx_UserTimerClear(indexl);

pcxx_UserTimerStart(indexl);

if (useLnArea && useOrder){

/* sorted-ordered list-deletion overlay */

outVec = overlayAreaLinkedOrderdeftVec, rightVec);

} else • • •{
• • -as in sequential code- ■ ■

}
pcxx_UserTimerStop(indexl);

time = pcxx_UserTimerElapsed(indexl);

printfO'Time for element '/.d : '/.lf", indexl, time);

}
where pcxxJJserTimer functions clear, start, and stop a timer numbered by the
element's index. pcxxJJserTimerElapsed reports the elapsed time. The main
program is:

void Processor_Main() {
int elem_count = pcxx_TotalNodes();
Processors P;
Distribution D(elem_count,&P,BLOCK);
Align A(elem_count,"[ALIGN(X[i],D[i])]");
Overlay<Patch> X(&D,&A);

X.readMapO ;

X.distributeMapO;

X.f indOverlayO;

X.writeMapO ;

29

r~i r
"P A I

' I 1
3 -V ! [—'

" I I 1

1 j I I r L

1 1
II* A

!
| 1

li
1 B

"" r
n

I

(a)
(b)

(c)

Figure 3: Comparing the list-deletion with the modified list-deletion algorithm.

}

where pcxx.TotalNodes returns the number of processors used for the compu-
tation.

The pC+-1- code was tested on a variety of platforms including a Cray T3D,
an IBM SP-2, a SGI Power Challenge, an Intel Paragon and a Sun Sparc 10.
Two maps each containing about 60,000 polygons were used as input. Three
sets of tests were conducted using the naive overlay algorithm, the list-deletion
overlay algorithm, and a modified list-deletion overlay algorithm.

The modified list-deletion algorithm can be described as follows. As illus-
trated in figure 3, we are given two maps A and B. A is indicated by shaded
area. Polygons in map A are separated by solid lines. Polygons in B are sep-
arated by dashed lines. Assume the polygons are sorted according to the x
coordinates of their upper right corner, the ordering scheme used in the ANSI C
code, so that comparison of the two maps would begin with the polygons in
the lower left corners of both maps. In both the modified and the original list-
deletion algorithms, when the lower left corners of maps A and B coincide, the

30

loop which compares polygons in B with polygon I in A begins with the poly-
gon pointed by arrow 1. The subsequent comparisons of polygons in B with
polygon II in A begin with the polygon pointed arrow 2, because the polygon
pointed by arrow 1 has been eliminated in earlier comparisons. Similarly, sub-
sequent comparisons of polygons in B with polygon 777 in A begin with the
polygon pointed arrow 3. In list-deletion algorithm, when the lower left corners
of the maps do not coincide, all comparisons of polygons in B with polygons
I, II, III in A begin with the polygon pointed by arrow 1. This is because
polygons to the left of map A are never eliminated in the comparison process.
In the modified list-deletion algorithm, when the lower left corners of the maps
do not coincide, only comparisons involving polygon I begin with the polygon
pointed by arrow 1. Subsequent comparisons involving II and III begin with
the polygons pointed by arrow 2 and 3 respectively.

Our experiments with the list deletion algorithm revealed that it does not
scale well. The extra work required to compare polygons in map A with polygons
in map B where no overlay occurs can degrade the algorithms performance to
well below that of the naive algorithm. Because the polygons in all the maps
we used for our tests were already sorted, the modified the list-deletion overlay
algorithm could be applied. The resulting improvement in performance was
dramatic. The benchmark results of the three sets of experiments are shown in
Table 2 and Figure 4.

As can be seen in Table 2 and Figure 4, on all the machines we were able
to obtain nearly linear speedups for the naive and the modified list-deletion
algorithm. The speedup curves decreased slightly for the modified list-deletion
algorithm as the number of processors increased. This was due to the fact that
as workload on each processor decreased, the overhead became more prominent.
The results show that the parallel algorithm we adopted worked very well for
the naive and the modified list-deletion algorithm. The original list-deletion
algorithm is not well-suited for parallel execution, causing the parallelized code
to perform poorly.

Another way to parallelize the list-deletion algorithm without modifying the
sequential list-deletion algorithm is to divide B into Bs and distribute Bs as we
did with As. Assuming, after the division and distribution, As and Bs roughly
cover the same area, finding the overlay of them will be straight forward. Once
the overlay of As and Bs is found, the collection elements exchange the part
of Ba where no overly is found, and a second phase of parallel operation can
be carried out. This parallel algorithm requires N phases of parallel operation
where N is the number of collection elements (usually chosen to be equal to the
number of processors). This algorithm also requires that the input polygons be
sorted.

However, it should be noted that the result of the modified list-deletion algo-
rithm is a distributed list of polygons which are locally sorted but not globally
sorted. However globally sorting the polygons is a very simple task. The sort-
ing algorithm described in section Section 2.4 has been applied to a data set of

31

8.00

7.00

6.00

5.00

4.00

3.00

2.00

1.00

Paragon

Power Challenge

SP-2

log(P)

0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50

Figure 4: log(P) vs. log(i) plot. P is the number of processors and t is the
execution time in seconds. The upper four solid lines are log(P) vs. log(f)
curves for the naive overlay algorithm; the lower four solid lines are log(P) -
log(t) curves for the modified list-deletion algorithm; the four dashed lines are
the log(P) vs. log(t) curves for the list-deletion algorithm.

32

Platform

Number of Processors
1 2 4 8 16 32 64

Cray T3D 2135.7 1143.2 590.2 299.8 151.1 75.8

19.9 990.5 735.7 429.6 229.6 118.2

19.5 10.6 5.7 3.2 2.1 1.5

Intel Paragon 3782.4 1942.4 983.4 494.9 248.1 124.2

28.5 1414.8 1048.7 612.7 327.6 168.8 85.6

29.1 14.5 7.6 4.3 2.9 2.0 1.66

IBM SP-2 1587.7 812.1 410.4 205.7 103.3
10.2 554.4 430.1 238.8 127.6

10.6 5.4 2.9 1.7 1.0

Power Challenge 1409.8 724.8 367.6 185.1
11.7 547.1 405.4 236.2
11.7 6.6 4.0 2.5

SPARC 10 1562.3
14.0

 13.4 1 .

Table 2: Time, in seconds, spent in the f indOverlay function. Two maps each
containing about 60,000 polygons (file K100.00 and K100.01) were used as input.
For each platform, results are shown for the naive overlay algorithm first, then
for the list-deletion overlay algorithm, then for the modified list-deletion overlay
algorithm.

this size and the time to sort it was 0.35 seconds on an 8 processor SGI Power
Challenge. Hence the execution times in the table above should have about one
third of a second added to account for the final sort.

A large fraction of the code in many parallel applications is devoted to I/O.
For example, in an early version of the polygon overlay program using ordinary
UNIX file I/O, 200 lines of code (approximately 10% of the total), was devoted
to I/O. In addition to programming time overhead for file I/O, there is run time
overhead as well; I/O is increasingly being identified as a bottleneck in parallel
applications.

pC++/streams (Section 2.3.3) can reduce the programming time and run
time overheads associated with file I/O in pC++ applications. Rewriting the
original UNIX I/O in the polygon overlay program using pf-streams reduced
I/O code from 200 lines to 70 lines.

33

2.6 The Self-Consistent Field Code

Here and in Section 2.7 we describe our work with with the Grand Challenge
Cosmology Consortium (GC3). This work is abstracted from two longer papers:
[32] and [15].

One of the N-body codes developed by the GC3 researchers is the Self-
Consistent Field (SCF) code, which is used to simulate the evolution of galaxies.
It solves the coupled Vlasov and Poisson equation for collisionless stellar systems
using the iV-body approximation approach. To solve Poisson's equation for
gravitational potential:

V2$(f) = 4irp(r),

the density p and potential $ are expanded in a set of basis functions. The basis
set is constructed so that the lowest order members well-approximate a galaxy
obeying the de Vaucouleurs i?1/4 projected density profile law. The algorithm
used is described in detail in [17].

The original SCF code was written in Fortran-77 by Lars Hernquist in 1991.
In 1993, the code was converted to Thinking Machines CM Fortran by Greg
Bryan. Experiments conducted by Bryan on the 512-node CM-5 at the National
Center for Supercomputing Applications (NCSA) indicate that with 10 million
particles the CMF code can achieve 14.4 Gflops on 512 nodes of the CM-5 [17].

The expansions of the density and potential take the following forms:

P(f) = ^2 Anlmpnlm(r)
nlm

nlm

where n is the radial quantum number and I and m are quantum numbers for
the angular variables. Generally, the two sums will involve different expansion
coefficients. But the assumption of bi-orthogonality ensures a one-to-one rela-
tionship between terms in the expansions for the density and potential. The
basis sets pnim and 3>njm also satisfy Poisson's equation:

V2$„;m(r) = 47rpn(m(r0

and are given by:

*nlm{?) = ~ (1 +
r

r')2,+1 C2'+3/2(fl V4^m(fl, 4>)

s r + 1

34

where Kni is a number related only to n and I, and Cn ' (£) and Yim(d, </>) are
ultraspherical polynomials and spherical harmonics, respectively. After some
algebra, the expansion coefficients become

Anim = -j-^Tnk[^nim(rk,ek,4>k)]*
Inl

where /„/ is a number and m^ is the mass of the fcth particle. Once the gravita-
tional potential is found, the gravitational force per unit mass can be obtained
by taking the gradient of the potential and the particles can be accelerated
accordingly.

2.6.1 The pC++ Version of the SCF Code

We design a C++ class called Segment to represent a subgroup of the N particles
used in the simulation. As we have discussed earlier, the major procedure in
the SCF code is to compute the sums for the expansion coefficients Anim. Our
approach is to first compute local sums within each Segment object. After
this, global sums are formed by a global reduction. The global sums are then
broadcast back to each Segment object where the particles are accelerated by
the gravitational force. Fortran subroutines in the original Fortran code can be
used as member functions of the Segment class, although subroutines involving
inter-element communication and I/O need to be modified.

The Fortran subroutines are called by pC++ through a specially designed
Fortran interface [32]. The Segment class is declared (with many unimportant
variables and member functions omitted) as follows:

class Segment {
public:

FArrayDouble x, y, z, vx, vy, vz, ax, ay, az, mass,
pirn, elm, dim, elm, flm, dplm;

double sinsum[lmax+l] [lmax+1] [nmax+1] ,
cossum[lmax+l] [lmax+1] [nmax+1] ;

Segment();
void compute_polynomial();
void compute_acceleration();
void update_position();
void update_velocity();

};

The data type FArrayDouble is denned in the Fortran library; it serves as an in-
terface to Fortran double precision arrays. The FArrayDobule variables defined
above are one-dimensional arrays that contain the positions, the velocities, the
accelerations, and the masses of particles belonging to a Segment object, and the
expansion coefficients and values of the polynomial, sinsum and cossum contain
the local sums and eventually the global sums of the expansion coefficients. The

35

class member functions call Fortran subroutines: compute_polynomial() com-
putes the polynomials and local sums, compute_acceleration() computes the
acceleration for each particle, and update_position() and update_velocity()
update the positions and velocities of particles.

The collection that distributes the elements, allocates memory, and manages
inter-element communication is declared as below. Again, many less important
member functions are omitted for brevity:

Collection SelfConsistField : public Fortran {

public:

SelfConsistField(Distribution *D, Align *A);

void InParticlesO;

void InParameters();

void OutParticles(int nsnap);

MethodOfElement:

virtual void compute_polynomial();

virtual void compute_acceleration() ;

virtual void update_position();

virtual void update_velocity();

void read_segment();

void write_segment();

};

The functions declared here are pC++ functions. Their main purpose is to
handle I/O. InParticlesO, InParameters(), and OutParticlesO read input
files and write to output files, while read_segment () and write_segment()
are called by InParticlesO and OutParticlesO to perform parallel I/O.
Functions that are already defined in element class Segment are declared as
virtual functions in this collection declaration. The inherited Fortran collection
is a parent collection which handles inter-element communication. Fortran itself
is derived from the SuperKernel collection.

The main program is:

void Processor_Main() {
elem.count = pcxx_TotalNodes();
Processors P;
Distribution D(elem_count, &P, BLOCK);
Align A(elem_count, " [ALIGN (X[i] , D[i])]");
SelfConsistField<Segment> X(&DS &A);
// read initial model
X.InParameters();
X.InParticlesO ;
X. compute_polynomialO ;
X.ReduceDoubleAdd(offset,variable_count);
X.compute_acceleration();
// main loop
for (n = 1; n <= nsteps; n++) {

X.update_position();

36

Platform

Number of Processors
8 16 32 64

Cray T3D
Intel Paragon

IBM SP-2
Power Challenge
CM-5 (pC++)

CM-5 (CM Fortran)

116.9

223.0
667.3
186.9
58.6

115.3
332.5
103.5

45.8
50.3

168.5

Table 3: SCF code execution time, in seconds, for evolving a 51,200 particle
stellar system for 100 time steps. The expansions were truncated at nmax = 6

and Imax = 4.

X.compute_polynomialO;
X.ReduceDoubleAddCoffset, variable.count);
X.compute_acceleration();
X.update.velocityO ;
X.OutParticles(n);

1
}
where ReduceDoubleAdd is a reduction function inherited from SuperKernel,
offset is measured from the beginning of the class Segment to the beginning of
the field sinsum, and variable.count is the total number of array elements in
sinsum and cossum. A leapfrog integration scheme is used to advance particles.

2.6.2 Benchmark Results

Our experiments with the pC++ SCF code were conducted on a Thinking
Machines CM-5, an Intel Paragon, an SGI Power Challenge, an IBM SP-2,
and a Cray T3D. For comparison, we also ran the CM Fortran SCF code on the
CM-5. 51,200 particles were used for the simulation. The system was allowed to
evolve for 100 time steps. The results of these experiments are listed in Table 3

As can be seen, the SCF code scales up very well on the parallel machines.
On the CM-5 the pC++ version is about 1.1 times faster than the CM Fortran
code. This is mainly because the pC++ code used a faster vector reduction
routine, while the CM Fortran code used a scalar reduction routine. The code
achieved highest speed—approximately 50 MFLOPS per processor—on the SGI

Power Challenge. 3

3The pC++ version of the SCF code described here was used recently in an experiment
involving a simulation of 16 million particles. One of the largest such simulations to date.
The computation was distributed over two MPPs, the 512 node NCSA CM-5 and the 512

37

2.7 The Particle Mesh Code

Another N-body code in the dossier of the GC3 group is the Particle Mesh (PM)
code [9]. Originally implemented in Fortran-77 and CM Fortran, the particle-
mesh method used in the PM code computes long-range gravitational forces
in a galaxy or galaxy cluster system by solving the gravitational potential on a
mesh. The three-dimensional space is discretize by a three-dimensional grid. An
average density for each grid point is then computed using a Nearest Grid Point
scheme, in which the density value at a grid point is the sum of all masses of the
particles nearest to that grid point. Once the density values at the grid points
are known, Fourier transforms are performed to compute the potential values
at those points. The potential values at the grid points are finally interpolated
back to the particles, and the particle positions and velocities are updated.
The natural data structures for this are an one-dimensional particle list and a
three-dimensional mesh.

2.7.1 The Particle List Collection

The particles in the simulation are first sorted according to their affinity to mesh
points; particles closest to a given mesh point are neighbors in the sorted list.
The sorted list is then divided into segments and each segment forms an element
of a particle list collection.

There are two approaches that we can follow when dividing the sorted list.
There is a tradeoff between data locality and load balance associated with the
two approaches. In the first approach, the sorted list is evenly divided so that
the segments have the same length. In the second, particles belonging to the
same mesh points are grouped into the same segment and segments will have
different lengths.

In the first approach, load balancing is ensured because each processor has
the same number of particles. However, this approach may cause particles be-
longing to the same mesh point to be distributed among different elements, thus
requiring more inter-element communication and remote updates. The second
approach allows a greater exploitation of data locality, but there is a potential
load balancing problem. As the system evolves, particles (stars or galaxies)
tend to group together into clumps. Consequently, some mesh points may have
1000 times more particles than other mesh points, and segments that have these
mesh points will have much longer lengths. Since we usually distribute the col-
lection elements (in this case segments) evenly across the processors in a parallel
machine, the processors that have those long segments will do more work. We
therefore decided to follow the first approach.

The Segment class is defined as:

class Segment {

node PSC T3D and run in parallel. Communication bettween the two codes was done using
MPICH over the internet.

38

public:

int particle_couivt;

FArrayDouble x, mass, g, v;

Segment();

};
where x, mass, g, and v represent the position, the mass, the acceleration in-
duced by gravity, and the velocity of a particle, respectively.

The ParticleList collection is denned as

Collection ParticleList : public Fortran {

public:
ParticleList(Distribution *D, Align *A);

void SortParticlesO;

MethodOfElement:

void pushParticles(Mesh<MeshElement> &G);

void updateGridMass(Mesh<MeshElement> &G);

};
The function SortParticlesO sorts particles in lexicographic order accord-

ing to their positions. The particles within each segment are first sorted using
the standard C library quicksort function qsort(). A global parallel sort is
then performed using the bitonic sort of Section 2.4.

pushParticlesO uses the gravitational force to update the positions and
velocities of the particles. The argument passed to pushParticlesO is a col-
lection designed for the mesh data structure (see next subection). The mesh
collection is passed to pushParticlesO so that potential values at the grid
points can be accessed by particles in the Segment element and used to update
the particles' velocities and positions. The function updateGridMassO is used
to add the mass of a particle to the total mass of the mesh point to which it
is closest. This function first loops through the particles local to a segment
and accumulates a local total mass for each mesh point. It then adds the local
total mass to the mesh point's total mass by a remote update operation on the
appropriate mesh point. Because remote updates are expensive, the particles
are sorted to minimize the number of remote updates.

2.7.2 The Mesh Collection

The mesh is logically a three dimensional array of mesh points, each containing
values for density and position. Because an FFT is used to solve the gravita-
tional potential equation, the data structure is designed as an one-dimensional
collection, each element of which contains a slice of the three-dimensional mesh:

class MeshElement {

public:

double density[x_dim_size][y_dim_size];

39

MeshElementO;

void add density(double density, int x.zone, int y_zone);

};

add_density() is remotely invoked by Segment elements to deposit mass on
grid points.

The collection Mesh is denned as:

Collection Mesh : Fortran {
public:
Hesh(Distribution *T, Align *A);
void computePotentialO;

MethodOfElement:
void xyFFT.f orwardO ;
void zFFT_f orwardO ;
void zFFT_backward();
void xyFFT.backwardQ;
void transpose_xy_to_xz();
void transpose_xz_to_xy();

The function computePotentialO computes the gravitational potential us-
ing the total mass at each mesh point. It calls the FFT routines listed un-
der MethodOfElement. The density distribution is first transformed into the
wavenumber domain by a FFT along the x, y, and z directions. After solving
the Poisson's equation for the gravitational potential in the wavenumber do-
main, the potential (or force components) is transformed back into the spatial
domain.

The FFT transform in the x, y, and z directions is performed by the Mesh
collection. The FFT in the x and y directions is straightforward, since each
MeshElement contains an entire array of mesh points. To perform an FFT in the
z-direction, data are transformed using transpose_xy_to_xz and transpose_xy_to_xy.

2.7.3 The Main Simulation Loop

Given these collections, the main body of the simulation can be implemented
as follows:

main(){
int num.of.segments = pcxx_TotalNodes();
int mesh_dim_z = 64;
Processors P;

Distribution Dist_PartList(num_of„segments, &P, BLOCK);
Align Align_PartList(num.of.segments, " [ALIGN(G[i], T[i])]");
ParticleList<Segment> part(&Dist_PartList, &Align_PartList);

Distribution Dist_Mesh(mesh_dim_z, &P, BLOCK);

40

Platform
Number of Processors
8 16 32 64

Cray T3D
IBM SP-2

Power Challenge
CM-5 (pC++)

CM-5 (CM Fortran)

30.4

33.4

16.1

23.1
81.0

134.6
20.4

Table 4: PM code execution time, in seconds, for evolving a 32,768 particle
stellar system for 10 time steps. A 64 x 64 x 64 grid was used.

Align Align_Mesh(mesh_dim_z, "[ALIGN(G[i], T[i])]");
Mesh<MeshPlane> mesh(&Dist_Mesh, &Align_Mesh);

// initialize particle list

// main loop
for (int i = 0; i < number_of_steps; i++){

mesh.computePotentialO ;
particlelist.pushParticles(mesh);

particlelist.sortParticlesO ;

particlelist.updateGridMass(mesh);

}

}
The main loop involves computation on both the Mesh and ParticleList col-
lections. First, the potential is computed in parallel on the grid. Second, the
particle velocities and positions are updated. If particles have moved to new grid
points, the appropriate data structures are then updated. The particles are then
sorted, after which the particle masses are accumulated in their corresponding
points for the next iteration step.

2.7.4 Benchmark Results

Our experiments with the pC++ PM code were conducted on a Thinking Ma-
chines CM-5, an Intel Paragon, an SGI Power Challenge, an IBM SP-2, and a
Cray T3D. For comparison, we also ran the CM Fortran PM code on the CM-5.
32,768 particles were used for the simulation. The system was allowed to evolve
for 10 time steps. The results of these experiments are listed in Table 4.

As can be seen in the table, the code scales up relatively well on the T3D
and Power Challenge. On the CM-5, the pC++ code is considerably slower
than the CM Fortran code. This is because the CM Fortran code can make use

41

of transpose routines embedded in an FFT developed by Thinking Machines'
engineers. The pC+4- code has complicated data structures and cannot use
those transpose routines. Again, the best performance was obtained on the
Power Challenge, although this architecture is limited to a small number of
processors.

In the following chapter we describe the TAU performance analysis tool
system that provides the programming and debugging environment for pC++.
TAU is a complete system that provides pC++ with an integrated development
environment similar to that found in professional development system. However,
by providing parallel performance analysis capabilities, TAU goes far beyond
any available commercial system.

42

3 Tau

3.1 Introduction
Most users find parallel programming difficult for at least four reasons. First,
parallel computing abstractions (e.g., data parallelism, task parallelism, pro-
ducer/consumer parallelism) are more diverse than sequential abstractions, and
the range of abstractions is not as well supported in existing programming
systems. ARE PARALLEL COMPUTING ABSTRACTIONS MORE DIVERSE THAN

LIST-BASED VS. UNIFICATION-BASED VS. PROCEDURAL VS. . . . ? Hence, the
choice of a parallel computing model requires a sophisticated understanding of
application, algorithm, language, system, and architecture issues. WHAT ARE

"SYSTEM" ISSUES (THAT ISN'T COVERED BY OTHER HEADINGS IN THIS LIST?
Second, most parallel programming systems do not insulate users fully from
low-level hardware and system software concerns; those that do make it difficult
for users to undertake performance debugging, and hence to realize the poten-
tial high performance of parallel systems. Third, program analysis tools for
parallel programming are either not generally available, not particularly useful,
or not integrated into a complete programming environment. Fourth, users'
requirements for parallel computing are constantly changing: high performance
is important, but so is the need to have parallel programs interoperate with
graphics systems, networked resource servers, databases, and so on.

The most common way to address these issues at present is to develop lan-
guages which support specific parallel computing abstractions, such as HPF.
These languages invoke parallel operation via compiler transformations and calls
to runtime system routines. Users gain programmability, since they specify par-
allelism abstractly and rely on the compiler to generate task and data mapping
code, and portability, since the system can be retargeted to new platforms.
However, these gains often come at the expense of observability. Unless the
programming system contains analysis tools that can relate a program's exe-
cution dynamics to its semantics, increased abstraction will make it difficult
to debug or tune program performance. This suggests that tools should be
designed specifically to meet the requirements of the language environment.

Since 1992, we have participated in building such an integrated toolset for
pC++, a parallel C++-based language (Chapter 2). Our charter was to de-
sign and develop a program analysis tool system. CAN YOU SUPPORT THIS
CLAIM TO UNIQUENESS? WHAT DOES IT MEAN TO SAY, "LET THE PROGRAM-
MING REQUIREMENTS DETERMINE THE TOOL SPECIFICATIONS"? The project
was unique in that we decided early on to let the programming requirements
determine the tool specifications. In addition, we leveraged the language sys-
tem infrastructure to enhance the integration of compiler and analysis tools.
The fact that our base language was C++ encouraged us to make our tools
as flexible as possible, so that we could use encapsulation (for supporting data
aggregation and parallel invocation) and inheritance (for building distributed

43

data structures) in our implementations. Finally, since pC++ was designed to
run on all parallel MIMD systems, our program analysis environment had to be
portable as well.

The result of our efforts is called TAU, for Tuning and Analysis Utilities.
In Section 3.2, we list the requirements that we felt TAU had to address. How
TAU's design meets these requirements is discussed in Section 3.3, which also
covers TAU's architecture and implementation. Each TAU tool is described in
full in Section 3.4. Since the effectiveness of TAU can be only measured by its
usefulness for analysis of pC++ programs, Section 3.5 shows how TAU was used
to analyze the pC+-t- implementation of polygon overlay, described in section
2.5.

TAU is not without its shortcomings. A critique of its current state is given
in Section 3.6. Section 3.7 discusses future development of TAU, partiuclarly
its extension to other parallel language environments and the incorporation of
more sophisticated tools.

3.2 Design Requirements and Goals

An earlier version of this material was published in [24].

TAU was designed to improve parallel programming productivity by com-
bining advances in parallel debugging, performance evaluation, and program
visualization tools. We feel that the requirements the design and the tools had
to address are common to next-generation parallel programming environments,
and include:

Give a user (program-level) view. Past tool development has been domi-
nated by efforts directed at the execution level (e.g., efficient implemen-
tation of monitoring). Consequently, tool users are given little support
for translating between program-level semantics and low-level execution
measurements.

Support high-level, parallel programming languages. The development
of advanced parallel languages (e.g., HPF and pC++) separates users
from execution-time reality. A successful tool must present information
to users in the terms defined by the language they are using.

Integrate with compilers and runtime systems. Most debugging and per-
formance analysis tools have been developed independent of parallel lan-
guages and runtime systems, resulting in poor reuse of base-level technol-
ogy, incompatibilities in tool functionality, and interface inconsistencies in
the user environment.

Enable portability, extensibility, and retargetability. Users of portable
languages need a consistent program development and analysis environ-
ment across multiple execution platforms. Tools should be extensible, so

44

that they can accommodate new language or runtime system features, and
retarteable, so that the tool design can be reused for different languages
and environments.

Enhance usability. A high-level, portable, integrated tool is not automati-
cally easy to use. In the past, too little emphasis has been put on interface
design, which has led to tools being poorly used.

These requirements become even more significant as we develop parallel lan-
guages with highly optimized runtime systems. We believe that the main prob-
lems are ones of tool design rather than functionality: existing tools implement
a broad range of analysis techniques, but have not been successfully integrated
into usable parallel programming environments. One way to improve integra-
tion is to base the design of tools on the particular performance and debugging
requirements of the parallel language for which the tools will be used. In this
manner, tools can specifically target program analysis support where tool ap-
plication is well understood. However, this cannot be fully realized unless tools
can leverage other programming system technologies (e.g., use the compiler to
implement instrumentation).

3.3 TAU Overview

Parts of this material (3.0 and 3.1) were previously published in [24].

The TAU architecture defines how its components interoperate and fit in
the pC++ language system. Below, we describe the TAU design and show
how it addresses the programming productivity requirements of pC++. TAU is
not a general solution to the problem of parallel program analysis. Instead, our
goal was to demonstrate the potential benefits of a new development strategy for
program analysis tools, one that promotes meeting specific analysis requirements
over providing general-purpose functionality.

TAU was specifically designed to meet the requirements listed in the previous
section:

Give a user (program-level) view. Elements of the TAU graphical inter-
face represent objects of the pC++ programming paradigm: collections,
classes, methods, and functions. These language-level objects appear in
all TAU utilities.

Support high-level, parallel programming languages. TAU is defined by
the program analysis requirements of pC++, and was designed and im-
plemented in concert with the pC++ language system. The most diffi-
cult challenges during the development of TAU were to determine what
low-level instrumentatione was needed to capture high-level execution ab-
stractions, and how to translate performance data back to the application
and language level.

45

Integrate with compilers and runtime systems. TAU uses the Sage++
toolkit [3] as an interface to the pC++ compiler for instrumentation and
accessing properties of program objects. TAU is also integrated with the
runtime system of pC++ for profiling and tracing support.

Enable portability, extensibility, and retargetability. We implemented TAU
in C++ and C to ensure an efficient, portable, and reusable implemen-
tation. The same reasoning led us to use Tcl/Tk [26] for our graphical
interface.

The TAU tools are implemented as graphical hypertools. While each is
distinct, they act in concert like a single application. Each tool imple-
ments some denned tasks; if one tool needs a feature of another, the first
sends a request to the second (e.g., display the source code for a spe-
cific function). This design allows easy extension. The Sage++ toolkit
also supports Fortran-based languages, so that TAU can be retargeted to
other programming environments.

Enhance usability. We tried to make the TAU toolset as user-friendly as pos-
sible. Many elements of the graphical user interface act like links in hyper-
text systems, in that clicking on them brings up windows which describe
the element in more detail. This allows the user to explore properties
of the application by interacting with the elements of most interest. The
TAU tools also support global features. When a global feature is invoked in
any tool, it is automatically executed in all TAU tools which are currently
running. Examples of these global features are described later. TAU also
includes a full hypertext help system.

3.3.1 TAU Architecture

Figure 5 shows an overview of the pC++ programming environment. The pC++
compiler front end takes a user program and pC++ class library definitions
(providing predefined collection types) and parses them to create a program
data base, or PDB. The PDB is accessed via the Sage++ library.

Through command line switches, the user can choose to compile a pC++
program for profiling or tracing. In either case, the instrumentor is invoked
to add the necessary instrumentation to the PDB (Section 3.4.6). The pC++
back end transforms the PDB into plain C++ with calls into the pC++ runtime
system. This C++ source code is then compiled and linked by the C++ compiler
on the target system.

The compilation and execution of pC++ programs can be controlled by
Cosy (COmpile manager Status displaY). This tool provides a user-friendly
and convenient way of compiling and linking pC++ programs (Figure ll4).
Through a graphical interface, the user first selects the parallel machine on which

4Figures 10 to 26 appear in Section 3.5

46

X static

file

X auxiliary tools -
w

II cosy

Figure 5: TAU Tools Architecture

the application is to be compiled and run. Parameters and options for compiling
and running are chosen through pull-down menus. Cosy automatically connects,
if necessary, to the remote machine, executes the appropriate commands, and
displays the resulting output in a scrollable window.

The program and performance analysis environment is shown in the bottom
right corner of Figure 5. It includes the TAU toolset, instrumentation, profiling,
tracing, and breakpointing support, and interfaces to performance analysis tools
developed by other groups [18, 23, 27]. The TAU tools are described in more
detail in Section 3.4.

3.3.2 TAU Implementation

The TAU architecture defines how the tools interoperate and fit into the pC+4-
programming system. This section discusses two components of TAU that sup-
port this: global features and well-defined internal tool interfaces.

47

3.3.3 Global Features

Global features are a natural extension to the "click-for-source" feature found in
some other parallel program analysis tools. But whereas these tools only allow
users to find the source code of elements in the performance views (e.g., show the
code containing the send or receive function call for a message transmission),
TAU allows users to click on anything which represents an function or class in
any tool, and automatically updates all tool display to show information about
the selected object (Figure 6).

For example, suppose a user is looking at the execution profile for her ap-
plication, and wonders why a specific function is taking so much time. Clicking
either on the function's name label or on the colored bar showing the execution
time used by the function, will invoke the global feature select-function. This
calls the Tcl/Tk function globalSelectFunc, shown in the middle of Figure 6,
with the unique identifier of the selected function as a parameter. This then
calls localSelectFunc, which causes the tool to show more specific informa-
tion about the selected function. Next, each of the tools known to implement
the global feature is checked to see if it is running. If it is, a message is sent
to invoke localSelectFunc with the same function name as an argument. In
Figure 6, this causes the file browser to show the source code of the selected
function, and the callgraph browser to show all of its call sites. The same effect
would have been achieved if the user had clicked on a function in either the
source code browser or the callgraph display.

This implementation has several strengths:

• The use of global features makes it possible to implement the TAU en-
vironment as hypertools, instead of as a single huge program. Hence,
the individual tools can be kept small, which simplifies maintenance and
debugging. It also makes tools easier to re-use in different contexts or
environments.

• The environment can easily be extended. A new tool only has to im-
plement those global features it needs or is able to support, then bind
invocation of those features to appropriate elements of its graphical user
interface and add itself to the global list of tools supporting that feature.

• The use of high-level interprocess communication (e.g., Tk's send) allows
a very simple implementation. It is also quite portable, as there are now
Tk modules for Scheme and Perl, and a C interface for writing libraries.

3.3.4 Internal Tool Interfaces

Figure 7 shows the internal implementation of the TAU's static analysis tools:
the source code browser Fancy, the callgraph browser Cagey, and the class
hierarchy browser Classy. I DON'T SEE CLASSY IN THIS FIGURE. If a browser
is started or switched to another user application, it invokes the object manager

48

[
tile ^alut Qt-dnt fcode „. a«t>i

mg3P lliWüiliS^jjä 30 »% i
randc p^JLJ 20.51% i

rtoensor Main m 17.15% !
po«_Barrtor ■ 13.42% !

HrGr: »Dread and conwrrt ^(9.90%

vranfc 1 424%
Gr.2wnn2u3 j 1X1%

Grsran3 1.17%

Gntoft «torn 0.98%

Gtixoarsar «lam 0.26%

-others- :
ClQiC lllii«

I

IV" octorMrfWtanwö^rtte ...J i
£ile JJalue J^ode L< Ü^lp j

950% Ü- node 0

IWtfcJ 1 | 10X3% $;

netto 2 ""■""""j 9.93% §f;

nuifcl 3 ■i n% lii
node 4 | 10.51!% si
node S

no*» n

nodt 7

node a

node 3

nudtflH

node 11

nod»12

nods 13

|] 11.39%

j 10.69%

|

10.04%

10JM% liisssi
lj 10.79%

10.15% IpJ&sSä
9.50%

9.46%

10.00%

node 14 1 9.52% m
node 15 "m""""\ B.92% ~?>

close j

{ j proc globalSelectFunc {fid}
localSelectFunc $fid —
foreach tool $selectFuncToolList {

if [isRunning $tool] {
send $tool "localSelectFunc $fid"

}

// public
void Gr: :eomm3() {

lnt l.Jj
pcxx_UserTlmerStart < C0MM);
cy3Cl) cy2(J) {

this->surf2buf(i.j.l>;
thls->surf_from_buf C1.1J.1>;

pcxx__UserTi.merStop(C0MM);

■»« spread_and_carom3 = spread + comm3

I cj3:i- cuii'y Y

wmmsm
j| Gr:spread_and^cofnm3 .

-*-1| Grdntarp ...

P^ ■£3$$ffiMBM8m^^& isi

Figure 6: Global feature Implementation

49

HOSTB

Figure 7: TAU Internal Tool Interfaces

and reads its output. Command line switches are used to specify the type of the
requested information. The object manager uses the Sage++ interface to access
the program database describing the current user application, then prints the
requested information in an easy-to-parse ASCII format. The object manager
reduces dependence on a particular language system by producing in a generic
format where possible, and enhances tool interoperability by making inter-tool
communication more robust. For example, this architecture makes it easy to use
TAU on a workstation to control a pC++ application running on remote parallel
computer. In thise case, instead of launching the object manager directly, the
TAU tools use a standard TCP/IP remote shell command.

TAU's dynamic analysis tools are implemented in much the same way. Racy
and Easy invoke programs to read profile data and event traces respectively,
then parse their ASCII output. This allows TAU to be ported to other language
systems in any of four different ways:

1. Change the compiler of the new target environment to produce a program
data base in the format used by Sage++.

2. Implement that part of the Sage++ function interface used by the object
manager for the program data base used in the new language environment.

50

3. Implement new information servers that understand the same command
line options, and output information in the same format, as the TAU
object manager.

4. Change the TAU tool interfaces to the information servers so that they it
work with the new language environment.

As an example, TAU was ported recently to work with the HPF compiler of
the Portland Group Inc. We used the third approach—write a new object
manager—to port the source code and the callgraph browser, and the first
approach—implement routines to generate TAU-compatible profile data files—
to adapt the profile data browser. The whole port required less than one person-
week, and shows the benefits of TAU's modular design.

3.4 TAU Tools

In this section, we describe the tools in the current TAU toolset5. These tools
are available as part of the pC++ distribution and operate in any environment
where pC++ runs. Some tools are pC++ specific, while others are could be
applied to other language systems. As TAU was designed to support extensions
to the toolset, new tools are continually being developed and incorporated into
the TAU architecture.

3.4.1 Static Analysis Tools

An earlier version of this material was previously published in [24].
This material has been updated where tool features have changed
or new tool features added.

A major motivation for using C++ as the base for new parallel languages
is its ability to support develoment and maintenance of large, complex applica-
tions. However, if they are to use C++'s capabilities effectively, users must be
given support tools which can access source code at the level of programming
abstractions.

TAU currently provides three tools to enable users to navigate through large
pC++ programs: a global function and method browser called Fancy, a static
callgraph display called Cagey, and a class hierarchy display called Classy. Since
these tools are integrated with TAU's dynamic analysis tools, it is easy for users
to find object-level execution information. To locate dynamic results after a
measurement has been made, a user only has to click on the object of interest,
such as a function name in a callgraph display.

5A11 TAU tools have adjectives as names, so that the answer to "What is TAU?" is "TAU
is a Cosy, Fancy, Cagey, Classy, Easy, Racy, Speedy, and Breezy parallel program analysis
environment."

51

3.4.2 File and Source Code Browser

Fancy (File ANd Class displaY) lets a user browse through the files and classes
making up her application. The main window displays listboxes showing the
source files used and the classes defined (Figure 12). Selecting an item in either
listbox displays all global functions defined for the selected file, or all methods
of the selected class.

Selecting a global function or a class method causes the corresponding source
code to be displayed in a separate viewer window (Figure 13). The header and
body of the currently selected routine, as well as functions and methods which
are called from that routine, are highlighted using different colors. Routines
and class definitions can be selected by clicking on the appropriate names.

3.4.3 Callgraph Browser

Cagey (CA11 Graph Extended displaY) shows the static callgraph of the user's
application (Figure 14). It uses Sage++ to determine the callgraph structure
and to differentiate between global functions and class methods. Cagey helps
users locate parts of their programs where parallelism is used by marking parallel
routines with the string "||". As callgraphs can be quite large, Cagey allows users
to control how far a callgraph is expanded.

Cagey supports two graph layout modes: extended and compact. In compact
mode, each function or method is represented by a single node. If a function
calls another more than once, the connecting arc is labeled with the number of
calls. This mode works well for structured or regular codes. In expanded mode,
Cagey draws a node for each individual function or method call; the resulting
graph is always a tree. Figure 14 shows a callgraph in compact mode.

3.4.4 Class Hierarchy Browser

Classy (CLASS hierarchY browser) is a class hierarchy browser for programs
written in C++ and derivatige languages such as pC++. Classes which have
no base class (called level 0 classes) are shown on the left side of the display
window (Figure 15). Subclasses derived from level 0 classes are shown in the
next column to the right, and so on. Like Cagey, Classy lets the user choose
the level of detail in the class hierarchy display by allowing folding or expansion
of subtrees in the graph. Classy also allows quick access to key properties of a
class, such as data members. Finally, Classy marks collections by putting the
string "||" before their names.

3.4.5 Dynamic Analysis Tools

An earlier version of this material was published in [24].

Static analysis tools provide high-level views of a program's structure; dy-
namic analysis tools capture information about the program's execution and

52

correlate it with those high-level views so that users can find correctness and
performance problems. TAU supports dynamic analysis in three ways: profiling,
which computes statistical information to summarize program behavior; trac-
ing, which portrays execution behavior as a sequence of abstract events that can
be used to determine various properties of time-based behavior; and breakpoint
debugging which allows a user to stop the program at selected points and query
the program's state. These are supported by an execution profile data browser
called Racy, an event trace browser called Easy, and a barrier breakpoint de-
bugger called Breezy.

3.4.6 Program Instrumentation

An earlier version of this section was published in [22].

All three analysis modes use instrumentation to capture runtime data. The
program transformations needed for this are done at the language level to ensure
portability. One problem this approach faces is to ensure that code to profile
function exits is executed as late as possible. Since a function can return an
arbitrarily-complex expression, correct profiling instrumentation must somehow
extract the expression from the return statement, compute its value, execute the
profiling exit code, and only then return the expression result. Matters become
even more complicated when we consider multiple exit points.

This is a good example of how we can leverage our language environment
for tool implementation. The trick is very simple: we declare a special Profiler
class that has a constructor and a destructor, but no other methods. A variable
of this class is then declared in the first line of each function that has to be
profiled, as shown below for function bar.

class Profiler {

char* name;

public:
ProfilerCchar *n) {name=n; code_enter(n);}

"ProfilerO {code_exit(name);}

}:

void barO {
Profiler tr("bar"); // Profiler variable
II body of bar

}

The variable tr is created and initialized by its constructor each time control
flow reaches its definition, and destroyed by its destructor on exit from its block.
The C++ compiler automatically rearranges the code and inserts destructor
calls to ensure correct behavior no matter how the scope is exited.

We use the Sage++ toolkit to manipulate pC++ programs to insert such
instrumentation at the beginning of each function. The user can selectively

53

specify the set of functions to instrument using an instrumentation command
file. Filenames, classes, and functions can be specified as regular expressions,
and included or excluded based on their name, source file, or class. Functions
can also be selected by their size (measured in number of statements and/or
number of function class), by whether they are inline functions, and by their
position in the static callgraph. If an instrumentation command file is not
given, every function in the pC++ input files is profiled by default. A graphical
interface to allow to control the instrumentation process for TAU is not yet
available.

3.4.7 Portable Profiling for pC++

The data captured by the entry and exit instrumentation described above can
be used to calculate the number of times a function is called and the execution
time it consumes. For pC++ we capture performance profiles for thread-level
functions, collection class methods, and runtime system routines. The data we
capture includes activation counts, execution times, and, in the case of collec-
tions, referencing information.

Our approach to profiling has two basic advantages. First, instrumenting at
the source code level makes it very portable. Second, different implementations
of the profiler can be easily created by providing different code for the construc-
tor and destructor. This makes instrumentation very flexible. Currently, we
have implemented two versions of the profiler: one based on direct profiling,
and one which calls event logging functions from the pC++ library. Other pro-
filing alternatives could be implemented in the same way. Instrumented version
of the pC++ class libraries support profiling of runtime system functions and
collection access.

If a pC++ program was compiled for direct profiling, executing it produces
a profile data file for each node. This profile data can be browed using either
Pprof, a parallel profile tool similar to UNIX Prof, or Racy (Routine and data
ACcess profile displaY). Racy, shown in Figure 16, gives a quick overview of
an applications' execution by summarizing both function and collection access
performance. The function profile summary presents a bargraph with one line
per processor, showing where program time was spent on that processor. In
addition, the mean, maximum, and minimum values are shown on top of the
graph. Detailed profiles for each node can be displayed in a variety of formats.

The collection access data profile summary shows access information for
pC++ collections. A bar graph shows the percentage of collection accesses that
were local or remote. By clicking on the collection name, the user can get a
per-node profile of this data. (Figure 21).

3.4.8 Event Tracing for pC++

Some of this material was previously published in [22].

54

In addition to profiling, we have implemented a system for tracing pC++
program events. Events are stored in a buffer on each node, which is written
to disk when it is full or when the program ends. Each event record includes
the event type, the originating processor, a high-resolution timestamp, and an
optional parameter. Each event is assigned an event class; when a program is
compiled for tracing, particular event classes can be activated or deactivated
to allow selective recording. The instrumentation required by tracing is imple-
mented in the same way as profiling instrumentation.

EC-BASIC

EC-KERNEL

EC-RUNTIME

EC-TIMER
ECTRACER

EC-PROFILER

EC-USER1
EC.USER4

Basic runtime events like begin and end of the whole pro-
gram andth^user^smajnjiimctimi^
Creation and deletion of collections, collection element
access.
Entry and exit of every pC++ runtime function including
barriers, message send and receives, polling. Mainly used
for debugging.
Calls to the pC++ timer and clock package.
Functions of the software event tracing package itself like
Init, Close, and FlushBuffer.
User function entry and exit points. Events of this class
are automatically inserted by the pC++ instrumentor.
Available to the user for manually inserted event recording
calls.

Table 5: pC++ Event Classes

We have also implemented several utilities for merging event traces, for con-
verting them to other formats, such as Pablo's SDDF [27] or Upshot's ALOG
[18], and for analyzing and visualizing traces using the Simple environment or
other tools based on the Tdl/Poet interface [23].

Easy (Event And State displaY) is an Upshot-like event and state display
tool. It displays states and events on an X-Y graph, allowing more detailed
access to event data when necessary. The Y axis shows individual processors,
while the X axis shows elapsed time. A particular event or state can be examined
by clicking on the corresponding graphical object. States are displayed in such
a way that they show when nesting occurs. WHAT IS "NESTING" IN THIS

CONTEXT? Figure 22 shows the major phases of a pC++ program.

3.4.9 Barrier Breakpoint Debugging

An extended version of this section was previously published in [5].

We have developed a program interaction system for pC++ called Breezy

55

Client Application Executing Parallel
Program

A

Type Module

T

.1

Type Module

Breezy Access
Module

T i_

Breezy
API

Breakpoint Executive
Module
T

Transport Layer

Figure 8: Breezy Architecture

(BReakpoint Executive Environment for visualization and data DisplaY) [5].
Breezy provides the infrastructure for a client application to attach to a pC++
application at runtime. This partnership gives the client several capabilities:

• The client can control the execution of the program.

• The client can retrieve data from parallel data structures created in the
program.

• The client can invoke functions or methods in the parallel program.

• The client can retrieve information about the program's execution state.

• The client can retrieve meta-information about the program, such as type
descriptions.

• The client may communicate in a general way with the parallel program.

The Breezy architecture consists of three modules (Figure 8). The Breakpoint
Executive maintains information about the program's state, including a list of
currently-instantiated parallel data objects. It consults the Type Module, which
stores meta-information such as type descriptions of the parallel data structures
or lists of all user-defined functions that can be called.

The Breezy Access Module is currently implemented as a library of C rou-
tines. It supports allows a client program to control the execution of the pro-
gram, to request information about the program state, and to access program

56

data structures. For example, a client using the API can specify the program
variable that holds the parallel data object of interest. If this object is a struc-
tured object with fields, such as a class, the client can further specify a particular
field. The client can then retrieve this data from all of the distributed elements
of the parallel data object, or from a single element in that object. To serve
requests for parallel data, the Breakpoint Executive calls access functions in
the executing program. These access functions reside in the (modified) user
program in order to have access to the program variables and functions, and
are generated automatically by the Breezy instrumentation phase of the pC++
compiler.

I AM TEMPTED TO CUT THIS ENTIRE LIST, EXCEPT FOR THE LAST POINT.
Several unique features of Breezy are: ARE YOU SURE THESE ARE UNIQUE?

• It has an easy-to-use, high-level interface.

•

•

•

•

Its modular design allows for component re-use and clean substitution of
new technologies (such as replacing the transport layer with CORBA/IDL[25]).

It can be built on to achieve more complex functionality, such as compu-
tational Steering. WHAT IS "COMPUTATIONAL STEERING" ?

It allows the programmer to make functions available for calling by the
client, giving the client the power to alter the course of the program or
perform specific computations. How IS THIS DIFFERENT FROM "COMPU-

TATIONAL STEERING" ?

Almost all of the implementation is done in the target language. WHAT

DOES "ALMOST" MEAN?

This last point is particularly interesting because it allows client applications
to reference data objects exactly as they were denned in the program, rather
than at a lower level resulting from compiler transformation. Also, it means
that a new implementation of Breezy is not required for each new architec-
ture; because Breezy is implemented using the language, it runs everywhere the
language does.

3.4.10 Performance Extrapolation for pC+-(-

An extended version of this section was previously published in [2].

The dynamic analysis tools already discussed enable users to investigate the
execution behavior of pC++ programs. However, because pC+-|- programs are
portable, users may want to develop and analyze programs that will run across
platforms or that will run in environments different from the development envi-
ronment. To support this type of program analysis, we implemented a perfor-
mance extrapolation system for pC-t-+ called ExtraP, that has been integrated

57

into TAU in the guise of the Speedy tool [2]. The ExtraP/Speedy combination
allows users to predict the performance of pC++ programs in target execution
environments.

The technique that we developed extrapolates the performance of an n-
processor execution of a pC++ program from its 1-processor execution behavior.
Important high-level events, such as remote accesses and barriers, are recorded
and timestamped during 1-processor execution. The instrumented runtime sys-
tem is configured so that remote accesses are treated as taking place instanta-
neously, and so that execution threads are released from a barrier as soon as
the last thread enters it.

Events are then sorted on a per-thread basis, and their timestampes adjusted
to reflect concurrent execution. This is possible because the non-preemptive
thread package used only switches threads at synchronization points, and be-
cause global barriers are the only form of synchronization used by pC+4- pro-
grams. Thus, the behavior of threads between barriers is independent, and the
sorted trace files look as if they were obtained from an n-thread, n-processor
run. The only features these traces lack are timings for remote accesses and
barriers. A trace-driven simulation attempts to model such features and predict
when events would have occurred in a real n-processor execution environment.
These extrapolated trace files are then used to obtain performance metrics for
the pC++ program. The technique is depicted in Figure 9, and described in
more detail in [28, 29, 30].

ExtraP uses pC++'s built-in event tracing system to generate the traces
needed for the simulation. These traces can be analyzed using TAU's event
trace browsers, and compared and validated against traces from real parallel
executions. Actual extrapolation experiments can be controlled using Speedy
(Speedup and Parallel Execution Extrapolation DisplaY), shown in Figure 10.
Speedy lets users control the compilation of pC++ programs, specify parame-
ters for the extrapolation model and the experiment, execute the experiment,
and view the experiment results. Speedy uses Cosy to perform the necessary
compilation, execution, trace processing, and extrapolation commands. Speedy
also automatically keeps track of parameters by storing them in experiment de-
scription files and manages all trace and experiment control files. Users can
re-execute experiments, or re-use parameter specifications, by loading a former
experiment description file into Speedy.

3.5 Tour de TAU: The Polygon Overlay Example

In this section, we show how the TAU environment was used to analyze the
pC+4- implementation of the polygon overlay problem described in section 2.5.

58

(pC++
Runtime Syste ̂ —c po++ \

Compiler/^

("Thread PackageV

<

pC++
Parallel Prograr

Executable

Sequential
Machine

Trace files from n-thread program
execution on one processor

/^ProcA/fiem. Data./'BarrierN
VModeiyV Model 7VModeL/

mace-driven Simulator

c Trace Translation
)

i Idealized predicted trace files for
concurrent execution on n processors

Simulation
(Execution A

Parameters J

T Predicted
trace files

(Trace Analysis!

Predicted Performance Metrics

Figure 9: A Performance Extrapolation Technique for pC++

59

File Appl Help

earth (sgi8k)

/research/extreme/stest/TestSuite/polyOver

File:

Functions defined:
Functions used:

Functions profiled:

moin<tnti>i

0
II0I00I01II0

mairK
in+ i;
float x;
x = foo(i);
barO;

>

cosy fancy

po,dep
«ill
III

main
-»■foo
-»bap

'-»zap
-»hog

cagey

/Ifool
l^°9lAEarl

\|zäpl

classy racy speedy

Figure 10: TAU Main Control Panel

3.5.1 Utility Tools

When TAU is started from the command line, the TAU main control panel
appears (Figure 10). The first line shows the host name and architecture of
the parallel machine on which compilation and execution of the pC++ program
will take place. The second line displays the directory where the program files
and program database are stored. The other fields show information about the
currently-selected user application. The last line only shows information when
a program was compiled for profiling. The buttons at the bottom are used to
invoke TAU's static and dynamic tools.

JOINED TWO PARAGRAPHS TO MAKE ONE; PLEASE CHECK. The compilation
and execution of pC++ programs can be controlled using Cosy (Figure 11).
Cosy automatically connects to the remote machine (if necessary), executes the
appropriate commands, and displays the resulting output. Its menu allows users
to build and run pC++ programs, to set compilation and execution parameters,
and to do standard tasks like cleaning up or listing the current directory. The
run button starts the executable that was compiled last and the stop button
terminates the currently executing command.

Figure 11 shows the compilation and execution of the polygon overlay ex-
ample. The version shown is being compiled for tracing; the generated event
traces can then be viewed with Easy. As the pC++ polygon overlay program
re-uses the original ANSI C reference program, we have to specify a list of extra

60

normal v profiling tracing breakpointing

build I run| stop I e.it |

executing: trc-sgimp -pcxx_NUMPRQC 8 -pcxX_£VENTCLASS P+B+R -L kl00.03 klO ... done

iReadfas Input: left "map" = 60377. right map = 60267
iiFor each element: left map = 7547, right map = 60267. extra map = 1
iNumber of polygons in file kl00.03 not evenly dlvldable by number of elements.
lElement 0 will have 0.013250% more polygons than other elements,

gets map from element 1 of a length 25551 ^Element
:Element
^Element
lElement

gets map from element
gets map from element
gets map from element

lElement 0 gets map from element
Element
i:Element

gets map from element
gets map from element

length 25614
length 25113
length 25275
length 25017
length 25169
length 25045

S^^^^^^^^SE^^^^^^^^^^^^^^BBl
extra pC++ switches:
extra C++ switches:

extra loader switches:
extra object files: poft.o poftL.o poAL0.o|

mmsmmmmmmmmsmsmi
set j cancel]

i
jgÄj

SntSun raramten

NUMPROCt 3
TRACEFILEj

USERPARflM: -L kl00.Q3 kl00.07 o

EVENTCLASS;

P basic

T kernel

ft runtime

F timers

r trace

cancel |

Figure 11: Cosy

61

kernel,h
math.h

PDA.C

poALQ.c
poftL_new.,c
poftO,c
poNaive.c
poO. c
util.c

Pr-c-cc>s„o.''_Main

Classes Methods (Overlay)
Align
Distribution
Kernel
Overlay
Patch
SuperKernel

m

Broadcastlnfo
Overlay
distributeMap
findOverlay
reacJHap
writeMap

....

Figure 12: Fancy Main Window

objects in the Build Parameters window before we can build. The user must
supply a makefile for these objects.

3.5.2 Static Analysis Tools

Figure 12 shows the main window of the Fancy file and class browser. The lists of
all files and classes are shown on the left. The files list includes the pC++ main
program (po.pc), and pC++-specific header files like kernel.h, as well as the
files making up the ANSI C reference implementation. The classes list includes
pC++'s predefined collection classes (Kernel and SuperKernel) the pC++-
supplied classes for describing the alignment and distribution of collections, and
the user-defined collection (Overlay) and element (Patch) classes. As described
in Section 3.4.2, selecting a file or class shows its components, as shown in
Figure 13.

62

ä imes
JiBQa!3SEllw«rCi»äg!(.lndexl,>.;_
pcxr-UserTimerStartl< l.ndexl ?j

lf (useLnArea 68. useOrderi f
autvec -

T else if
laverlayAreaLinkedOrdentleftVec. rightVec)j

CuseLnHrea){
_DutVsc = !overlauftreaLlnked(leftVec, rightVec!:

} eise if (useHrea R6 useQrder) {
 outVec = lover lauftreaOrder/ lef tVec. rlghtVec/; .
} else if (useAreaH

outVec _= |overlayfire.3J(ieftVec._rightVec):
} else if CuseÖrderK

outVec = overlauQr-derjdeftVec. i'J.ghjLVec) :
} eise {

outVec = overlay tieftVec, rightVec);

'pcxx_Ussr-TlmerS.top(index 1);_:
time = pcx^^UsexliraerElaßse.dCindexl); ;
printfC'Time for element %ö ; XlfW, lnde.d, time);

closej

i '

Figure 13: Fancy File Viewer Window

63

£il& üieu I

FYocessor Main

m

Patch::Patch

Distribution-Distribution

AUgn::Alfgn

|| Over1ay::Overlay ...

|| Overlay:TBadMap

|| Overiay::Braadcastlnfo

■*- || Overiay:rflstributaMap .

|| Ovortay:nvrtteMap .

1ÜI1

|| overlayAroaUnkedOrder .

|| oveilayAreaUnked ...

■ || overiaytoaOnltt ...

|| overlayArea ...

|| ovarlayOrder ...

|| overtay ...

Figure 14: Cagey

Figure 14 shows a Cagey callgraph view of the polygon overlay code with
Overlay: :findOverlay expanded. In addition to allowing users to check the
static structure of their programs, these displays are convenient navigation aids.
As can be seen, the overlay example has a fairly simple structure, with the bulk
of the data-parallel computation in the expanded routine.

The class hierarchy browser, Classy, allows quick access to key properties of
a class. pC++ collections are marked with a "||" before the name. When a class
is selected, a member table window is displayed, which shows a detailed list of
the class's members and their attributes (Figure 15). The word element is used
to indicate the pC++ concept of a method of element function. As can be seen,
the pC++ polygon overlay algorithm defines its collection class by subclassing
from the predefined collection Superkernel.

3.5.3 Dynamic Analysis Tools

TAU's dynamic analysis tools help users relate dynamic measurement results to
their original pC++ programs by presenting results in terms of pC++ language
objects. To show how, this section shows the results of some experiments done
on an 8-processor SGI PowerChallenge with 512 MByte of memory. As stated
in section 2.5, the pC++ implementation of the polygon overlay problem is
"embarrassingly parallel", so a dynamic analysis of it is not particularly exciting.
We therefore show the dynamic behavior of the whole application, including its

64

File View Help

Align

Distribution

exception I
INFO HEAD

Kernel -»• 11| SuperKemel |

mallinfo

{äää&iji!Jffiffi&»»i^

Broadcastln-Fo
Overlay
distributeMap
findOverlay
ieftVec
outVec
readMap
rightVec
writeMap

public
public
element
element
public
public
element
public
element

function
constructor
function
function
variable
variable
function
variable
function

Figure 15: Classy

65

Figure 16: Racy Main Window

input and output phases.
The main window of the Racy profiling tool (Figure 16) gives a quick overview

of the application's performance by summarizing both function and collection
access profile data. These summary displays allow us to make three important
observations about the pC++ polygon overlay program:

1. Processor 0 has a different behavior than all the other nodes. A closer look
using the function legend reveals that this is because node 0 is doing all
of the programs' I/O (in Overlay: :readMap and Overlay: :writeMap).

2. The other processors spent about two thirds of their time waiting (in
pC++ runtime system functions pcxxJSarrier and pcxx_Poll).

3. The good speedup of the main algorithm (Overlay: :f indOverlay) has a
simple explanation: from the collection summary we can see that processes
make only local accesses to the distributed collection X, which holds the
map data. This means that there is no communication or synchronization
in this part of the program.

To investigate the program further, we bring up node profiles for node 0 and
node 1 (as a representative for the other nodes) by clicking on the labels in the
function summary display (Figure 17). As the behavior of node 0 is different

66

Overlay :xead Map

Overlay: write Map

pcxx_ftjH

overtay AreaUnked

pcxx_Barrier

poly Area

polyVec2AreaUi

poly Ui Cons

Processor_Maln

poiyLnZVec

Overtay:: Broadcastlnfo

Overtay ::fmdOverfay

Overlay: distribute Map

j£ile ^alue flr-fler flod» \±r.iti !HII
OveriaytTeadMap

Overlay ::writeMap

pc>cx_Poll

overlay AreaUnked

pcxx_Barrier

poly Area

polyVec2ArealJi

polyLnCons

FYocessor_Main

poiyLnZVec

Oveiiay::Broadcastlnfo

Overtay ::findOver1ay

Overlay::dlstrfbuteMap | 0.1

22.9

I 21G

Figure 17: Racy Node Profile (showing seconds)

Process or_Ma!n

Over1ay::readMap

Overlay:: rmdOvarlay

overlay AreaUnked

Overlay:: write Map

pcxx_Barrter

polyVecZArealn

pcxx_Pod

Overlay:: Broadcastlnfo

polyArea

poly Ln Cons

polyLn2Vec

Overtay :;dls tribute Map

aJ

FYocessor_Ma]n

OverlayiroadMap

OveHay::nntf Overlay

overtayflreaUnked

Overiay::wrtteMap

pcxx_Bantar

polyVecZAreaLn

pcxx_P0H

Overtay::Broadcastlnfo

polyArea

polyLnCons

polyLn2Vec

Overtay::dis1r1buteMap

12.7

12.7

Figure 18: Racy Node Profile (showing total seconds)

from that of the others, comparing the functions implementing polygon overlay
is misleading if we display the execution times as percentages. We therefore
configure the displays using the Mode and Units menus to show the time spent
in the functions in seconds. Comparing the functions that actually implement
overlay (overlayAreaLinked, polyArea, PolyVec2AreaLn, polyLnCons, and
polyLn2Vec), we can now see that they use approximately the same time.

We can make this observation even easier if we use the Value menu to config-
ure the displays6 to show the execution time including all children (Figure 18).
We now only have to compare the execution time for Overlay: :f indOverlay.

We can use also a function profile display to compare the performance of a
specific function on all nodes simply by clicking on a function name or the bar

6 Note that we do not have to do this for every node profile window. In using the Configure
menu in the Racy main window, we can change all displays at once.

67

£i le Qrder» Help

%time

100.0
0.0

22.1
22.1
0.0

77.7
9.2

39.9
7.9
5.0
1.2
0.0
0.1

msec total msec «call usec/call name

31
0
0

5.908
0

21.615
3.211

22.876
0

2.B52
680
25
68

57.269
0

12.678
12.678

0
44.491
5.264

22.876
4.541
2.852

680
25
68

1
1
1
1

18
1

590365
1

93365
25551

1
1

57269900
32

12678100
12678000

27
2471728
5264720

39
4541300

31
27

25105
68282

: wr-i teMop
ocxx_Barner

?c2ftre«in

.wmmmm

close

Figure 19: Racy Text Node Profile

representing the function. Figure 20 shows the time spent in Overlay:: f indOverlay
and its children on the different nodes used for the execution of the program.

This information lets us hypothesize that most of the waiting on processors
1 to 7 happens during the I/O phase on processor 0. Simple profiling does not
allow us to verify our hypothesis, but we can do this very easily using event
tracing.

After the execution of the program, we have an event trace for each node.
Once these are merged, we can use Easy to look at the dynamic execution
behavior of our application (Figure 22). We easily see that processors 1 to 7 are
waiting in a barrier while node 0 is performing I/O (in Overlay:: readMap and
Overlay: :writeMap). This confirms the hypothesis we made after profiling.
We can also see the typical SPMD behavior of pC++ programs. Execution of a
compiler-inserted barrier after each call to a MethodOf Element method can be
spotted by the vertical alignment of the right ends of the arrows representing
the pC++ runtime system function pcxx_Barrier.

It is interesting to note that we measured the same performance behavior for
input sizes ranging from 100 to 100,000 polygons. The ratio between the time
needed for I/O and the time used for finding the overlay was roughly constant,
resulting in the same general execution behavior.

The TAU barrier breakpoint debugger, Breezy, allows users to control a
pC++ program running on a parallel machine from a remote workstation. Un-
fortunately, the polygon overlay example is too simple to allow a full demon-
stration of Breezy's functionality.

Having used Cosy to compile the program for breakpointing, executing it
automatically launches the Breezy main control panel (Figure 23). The left
side allows the user to select the next breakpoint (i.e., barrier) or to terminate
execution. Every time the program is stopped at a barrier, the display of active

68

Figure 20: Racy Function Profile

£ile Mode ISIS
|Overlay<Patch> X

IB elements of size 46 [384 BÜ

1-dimensional shape

node 0 |

node

node
node 3 ||

node

node
node 6 ||

node 7 ||

\ i

Figure 21: Racy Collection Profile

69

-state; Overlay;:readMap(5)
cpiit 0

.start: ?05?52
er.di 962265

nested on; PrDceEBOt_rtain<iQ>
close

►F^
s

^

3=PE
<H P4»

"♦ft!
M—ti

state: barrier*IZJ
cpu: ?

starti 705719
end; 362391

state: QveriayinfindOverlay(8>:
--,' ■: -■

start: 1034110
end: 1066055

nested on: ProeeaBorwMd uiU0J

w-*t

■I ■*■

«- ■►I

■*-*-*■**!

:•! *

« i f» fa i

stat«: Overlay;;uriteMap(9)
-■ : »■

Start: 1U5S0?
end: 1216408

n«st«f ort; Protesgot*_Matn^lO)

•

: CTO-> T«VI» fug*.-.

To Page:

■ ' ■.■-•'If'- ft--« |
Zroi- In J

ZGC*I Out j
r Sitew ¥ta*&* t
f* Show Ewent-a j

Change Event Colors

nsetsd onj Proceasor„Mafn<10> afrom tine 0 to time 4»0»
ciosfe

I event: PrDce5sor_Main-rcturnlIö0i
j cpu: ?

Urne: 121609V

Figure 22: Easy

I ;

Parallel Prog Execution Control
Next Breakoitit

Skip <N> Breakoints |0

Continue \H> Br-eakolntsjo

Terminate E\ecutian

Data Retrieval & Visualization
Collection Instance List

Overlay >. Patch > tl] X

Display Element of Selected Collection

Display Element Type

Ouit

mmtiwfr"?"?»

Figure 23: Breezy

70

collections is updated. In our example, there is only one active collection in-
stance, Overlay<Patch> X. Selecting the collection results in a window showing
the type of an element. Users can select one or more fields of the element class,
and retrieve data from these fields to pipe into a visualization program.

MAJOR SURGERY ON THIS PARAGRAPH. Because the pC++ polygon overlay
program re-uses the original ANSI C code to perform local node calculations,
the (Overlay<Patch> X) collection elements only contain pointers to locally-
allocated map data. Breezy is currently unable to reference such data; this
feature will be added in the next TAU release.

3.5.4 Performance Extrapolation

The use of ExtraP/Speedy to estimate the performance of the polygon overlap
problem proved to be more interesting than trace analysis. We used a Hewlett-
Packard workstation to predict the performance of the polygon overlay code on
our SGI PowerChallenge machine. We ran an n-threaded version of the code
(n = 1,2,4,8,16) on our workstation, collecting event traces as described in
Section'3.4.10. We then set execution environment parameters to correspond
to the SGI machine and observed the performance behavior. The maps used in
these experiments had approximately 25,000 polygons.

The Speedy main control window (Figure 24) is launched by clicking the
Speedy button on the TAU main control panel. We build a trace-generating
pC++ executable by selecting the Compile button of the main Speedy window;
Speedy then uses Cosy to execute the necessary commands. We then specify the
parameters for the experimental run. Clicking on varying parameter 1 gives
us a parameter menu, from which select and modify Number of Processors.

The Speedy parameter viewer (Figure 25) is used to specify the neces-
sary parameters for the ExtraP simulation phase of the experiment. As the
Overlay :f indOverlay code in the pC++ implementation does not involve any
communication or synchronization, the only one of the 25 ExtraP parameters
which is significant is MipsRatio, simulation (HP) and actual (SGI) machine is
MipsRatio, which is the relative speed of the CPU of the target machine (SGI)
to that of the simulation machine (HP). We ran the sequential polygon overlay
code on both platforms to determine this ratio. Because the polygon overlay
code involves only integer arithmetic, the time on the 99MHz HP-PA chip (1.68
seconds) was close to that on the 75MHz R8000 (1.53 seconds). We therefore
set MipsRatio to 0.91.

Clicking Speedy's Run Experiment button starts the experiment. After each
iteration of the extrapolation, the execution time graph in the Speedy main
window is updated, which allows the user to see, and control, the evolution of
the experiment. This is important for long-running experiments: if something
goes wrong, it can be stopped early. Clicking on the data points in the graph
displays individual values, a table can also be generated (Figure 26b). If the
varying parameter is Number of Processors, as in our example, a speedup

71

File

Compile | Vleu/Sat Parameters [Run Experiment I

Help]

varying parameter 1; Number of Processors

values: 1 2 4 8 16

varying parameter 2: —NONE-

vaJues: 1

Lxunution lime [s]

v multiples of [from | to j r including 1

*< powers of J5 from fi to JTI

T"

Number ot PniM'ssnrs

______________»_„„

Figure 24: Speedy Main Window

72

Runtime System j interconnect Hetnoi-k [_J}^0j^_il^el£fEe_i

Processor

MlpsRatio: [Ö".91

ProcessMsgType; AtBarrlersAndRepliesOniy

Polling Period: |0.0 Cus3

-100 I -10 I -1 1 +i +10 +100

Reset ! Load | Save^

*^^is>9«g<'y^ws"w»ft'w»f>^>^^j^^ »-»<» ^^NarfiS^^;

Close
»»*,?> ~^?yi» •?■»»■••». ••■*>""> *v ' »*»>■ av^ia

Figure 25: Speedy Parameter Viewer

73

display is also available (Figure 26a).
Speedy uses one of the pC++ runtime system timers to determine which

part(s) of the program to measure. This allows the user to choose whether to
measure the whole program or only parts of it during a performance extrapola-
tion experiment. In our example, we put timer calls around the Overlay:: f indOverlay
method only. The results show almost linear speedup for this part of the code.

Number of Processors
1 2 4 8 16

estimated 1.56 0.83 0.46 0.29 0.21
measured 1.38 0.84 0.51 0.39 -

Table 6: Execution Time in Seconds

As Speedy is fully integrated with TAU, users can employ other TAU tools
to verify extrapolation results, or compare them with actual measurements.
Table 6 lists both measured and estimated execution times for our SGI Power-
Challenge. As can be seen, the two sets of values are reasonably close.

3.6 Critique

In this section, we evaluate TAU based on its implementation on a large number
of parallel platforms.

• A parallel programming environment should support the full development
circle. The TAU environment currently supports compilation and exe-
cution control, static and dynamic program and performance analysis,
debugging, and performance extrapolation. One area which is not yet
supported is program development. Currently, we are working on an ed-
itor which would be integrated with the other TAU tools. This would
replace the Fancy source code viewer. One would use the static browsers
to "jump" to a function, method, or class in the editor. If an error oc-
curred during compilation with Cosy, clicking on the error message would
jump to the corresponding source code line.

Also, TAU currently only supports function and class symbol lookup. We
are planning to enhance the TAU browsers to support generic symbol
browsing. This will require support for portable access to symbol table
information, and tracking symbols between the parallel language level and
the intermediate (compiler-generated) language representations.

• Debugging for parallel programs is very important. The functionality of
the Breezy debugger is too restricted. We are currently implementing a

. new event- and state-based debugging interface. It will form the basis for

74

(a) Speedup Display

|;___i". . _" R"jat"wiuw.__' „ " LL
£lle Helpi

Execution Time Cs]

Number of Processors I 16

0.20?

Speedup

Number o-P Processors I

1.563 0,825 0.457 0.289

1 16

7.54? I 1.000 1.894 3.418 5,414
>-&&&&fc&W&>&l=l8>5S^^

(b) Result Values Viewer

Figure 26: Speedy Result Values Windows

75

a number of high-level debugging tools, including traditional debuggers,
data extraction and visualization tools, and interactive profiling tools,
as well as for novel application-specific debuggers. It will be realized as
a very-high-level multithreaded language on top of a simple but general
event-based debugging API.

• Portability is a design issue. Portability is difficult to achieve, especially
on parallel machines, where operating systems and C++ compilers are
not as standard as they appear. Even simple things like getting a pro-
gram to start executing in parallel is different on all machines. Portability
must be considered from the very beginnings of a design; it cannot be
achieved by first implementing a prototype for a specific platform, and
then trying to port that prototype to different platforms. We believe we
have solved these problem in TAU, which, like pC++, runs on every ma-
jor commercial parallel computer and UNIX workstation and work with
every major C++ compiler. This was achieved through a combination of
software engineering methods and meticulous attention to detail in our
initial designs.

• C++ is a very complex language. Writing commercial-quality tools for a
C++-based parallel language as a University research project is almost
impossible. For example, even simple things like a generation of the ap-
plication's callgraph is complex, in comparison to older languages like
Fortran or C because of the need to handle constructors and destructor
hierarchies, operators, virtual functions, etc.

3.7 Conclusion and Future Work

The current TAU system has been highly successful in meeting the program
analysis requirements of the pC++ language system. However, TAU also es-
tablished a methodology and architecture for building program analysis envi-
ronments that we hope to extend in three ways:

Support a wider range of programming models. TAU's tools currently focus on
the data-parallel style of programming embodied in pC++ and HPF. That
style makes program analysis relatively easy: data-parallel programs typ-
ically have simple, uniform communication patterns and frequent, global
synchronization points. Once the model is relaxed to allow task par-
allelism or concurrent composition of data-parallel operations, program
analysis becomes harder. Tools must contend with asynchrony, irrepro-
ducible behavior, the lack of consistent, global states, and complex pat-
terns of process interaction.

To support these programming models, TAU will be extended to incorpo-
rate a replay mechanism. This will make it possible to repeat executions,
instrumenting the code to any required level of detail. It will also make

76

it possible to decide post mortem whether more sophisticated models of
observability are needed. All existing TAU tools will be modified to work
transparently during replay.

Replay, however, is only one approach, and is quite expensive in tracing
overhead. TAU should also support more limited models of observability,
giving users a choice of a range of tools. For example, one level of support
might provide tracing facilities sufficient for replay, another sufficient for
animation of specified data structures, another for logging procedure calls,
etc. As a consequence, Breezy (or its successor) will have to be updated
to support multiple notions of a breakpoint. The user's choice of tools
and options will determine the requirements for observability that are
automatically supported with instrumentation.

Increase functionality. The generalization of programming model will require
new, more powerful tools, particularly for debugging. Programs with com-
plex inter-process interactions will require a multi-level debugging strat-
egy, in which event-based techniques are initially used to find gross pat-
terns of process interactions, and state-based techniques predominate after
the focus of attention has been narrowed to a single process or small set
of processes [20]. Initial use of event-based techniques focuses the user's
attention on manageable portions of the state space and provides the basis
for establishing consistent, meaningful, global breakpoints. Event-based
techniques can incorporate replay mechanisms that support reproducible
execution and logical time transformations to filter out perturbations due
to asynchrony.
State-based techniques, on the other hand, allow the user to examine an
execution to an arbitrary level of detail, and often make it easier to relate
errors to source code. The event- and state-based tools that we are de-
veloping will be interoperable. Our current prototype demonstrates that
this interaction can be quite powerful: it allows the user to set consistent
breakpoints that are meaningful in the context of her ongoing event-based
analysis. Often, these breakpoints would have been difficult or even im-
possible to set with conventional mechanisms [20].

We will need to develop appropriate abstractions to include event-based
tools in our environment. Most existing tools operate at a very low level,
basing their models on explicit read and write operations that are not
meaningful to the pC-f + or HPF programmer.

Maintain tight integration with the language system despite increasingly ag-
gressive program transformations and optimizations. Finding appropriate
abstractions for event-based tools is just one instance of a more general
problem for parallel program analysis environments: the trend toward
higher levels of programming abstraction coupled with generation of ever-
more-efficient target code, means that tools must become increasingly so-

77

phisticated if they are to relate execution to source code. The current
implementation of pC++ does not optimize aggressively, but as the next
generation parallel C++ language system, HPC++, is developed, TAU
will have to provide more assistance in maintaining the source/execution
correspondence. Our approach will be similar to that of [1], in which the
compiler provides performance tools with extensive information on the
mapping between source and SPMD codes. For debugging, however, we
will have to go further, enabling the tools to interpret not just performance
statistics, but detailed data manipulations and control flow in terms of the
initial, high-level program.

78

References

[1] V.S. Adve, J. Mellor-Crummey, M. Anderson, K. Kennedy, J.-C. Wang,
and D.A. Reed. An Integrated Compilation and Performance Analysis
Environment for Data Parallel Programs. In Proceedings of Supercomputing
1995, December 1995.

[2] H. Beilner and F. Bause, editors. Speedy: An Integrated Performance Ex-
trapolation Tool for pC++ Programs, number 977 in Lecture Notes in Com-
puter Science. Springer-Verlag, September 1995.

[3] F. Bodin, P. Beckman, D. Gannon, J. Gotwals, S. Narayana, S. Srinivas,
and B. Winnicka. Sage++: An Object Oriented Toolkit and Class Library
for Building Fortran and C++ Restructuring Tools. In M. Chapman and
A. Vermeulen, editors, Proceedings of the Second Annual Object-Oriented
Numerics Conference, Corvallis, OR, 1994. Rogue Wave Software.

[4] F. Bodin, P. Beckman, D. Gannon, S. Narayana, and S. Yang. Distributed
pC++: Basic Ideas for an Object Parallel Language. Scientific Program-
ming, 2(3), 1993.

[5] D. Brown, A. Malony, and B. Mohr. Language-based Parallel Program
Interaction: the Breezy Approach. In Proceedings of the International
Conference on High Performance Computing (HiPC'95), New Delhi, In-
dia, December 1995. IEEE Computer Society, Tata McGraw-Hill.

[6] M.J. Carey, D.J. DeWitt, M.J. Franklin, N.E. Hall, M.L. McAuliffe, J.F.
Naughton, D.T. Schuh, M.H. Solomon, C.K. Tan, O.G. Tsatalos, S.J.
White, and Y. Zwilling. Shoring Up Persistent Applications. In Proceedings
of the 1994 ACM-SIGMOD Conference on the Management of Data, May
1994.

[7] K.M. Chandy and C. Kesselman. CC++: A Declarative Concurrent
Object-oriented Programming Notation. In G. Agha, P. Wegner, and
A. Yonezawa, editors, Research Directions in Concurrent Object-Oriented
Programming, pages 281-313. MIT Press, 1993. ISBN 0-272-01139-5.

[8] J. Choi, J.J. Dongarra, and D.W. Walker. The Design of Scalable Software
Libraries for Distributed Memory Concurrent Computers. In H.J. Siegel,
editor, Proc. Eighth International Parallel Processing Symposium. IEEE
Computer Society Press, April 1994.

[9] R. Ferrell and E. Bertschinger. Particle-Mesh Methods on the Connection
Machine. International Journal of Modern Physics C, 1993.

[10] D. Gannon. Libraries and Tools for Object Parallel Programming. In Ad-
vances in Parallel Computing: CNRS-NSF Workshop on Environments and

79

Tools for Parallel Scientific Computing, Saint Hilaire du Touvet, volume 6,
pages 231-246. Elsevier Science Publisher, 1993.

[11] D. Gannon, V. Guarna, and J.-K. Lee. Static Analysis and Runtime Sup-
port for Parallel Execution of C. In Languages and Compilers for Parallel
Computing, pages 254-274. MIT Press, 1993.

[12] D. Gannon and J.-K. Lee. Object Oriented Parallelism: pC++ Ideas and
Experiments. In Japan Society for Parallel Processing, pages 13-23, 1991.

[13] D. Gannon and J.-K. Lee. On Using Object Oriented Parallel Programming
to Build Distributed Algebraic Abstractions. In Bourge and Cosnard, edi-
tors, Proceedings of CONPAR 92-VAPP V, pages 769-774. Springer Verlag,
1992.

[14] D. Gannon, N. Sundaresan, and P. Beckman. pC++ Meets Multithreaded
Computation. In J.J. Dongarra and B. Tourancheau, editors, Second Work-
shop on Environments and Tools for Parallel Scientific Computing, pages
76-85. SIAM Press, 1994.

[15] D. Gannon, S. Yang, P. Bode, and V. Menkov. Object Oriented Methods
for Parallel Execution of Astrophysics Simulations. In Mardigras Teraflops
Grand Challenge Conference. Lousiana State University, 1994.

[16] J. Gotwals, S. Srinivas, and D. Gannon. pC+-|-/streams: a Library for I/O
on Complex Distributed Data Structures. In Symposium on the Principles
and Practice of Parallel Programming. ACM, 1995.

[17] L. Hernquist and J.P. Ostriker. A Self-Consistent Field Method for Galactic
Dynamics. The Astrophysical Journal, 386:375-397, 1992.

[18] V. Herrarte and E. Lusk. Studying Parallel Program Behavior with Up-
shot. Technical Report ANL-91/15, Mathematics and Computer Science
Division, Argonne National Laboratory, August 1991.

[19] C.H. Koelbel, D.B. Loveman, R.S. Schreiber, G.L. Steele Jr., and M.E.
Zosel. The High Performance Fortran Handbook. MIT Press, 1994.

[20] J. Kundu and J.E. Cuny. The Integration of Event- and State-Based De-
bugging in Ariadne. In C. Polychronopoulos, editor, Proceedings of the
1995 International Conference on Parallel Processing (ICPP), pages 130-
134. CRC Press, August 1995.

[21] M. Lemke and D. Quinlan. P++, a Parallel C++ Array Class Library
for Architecture-Independent Development of Numerical Software. In Pro-
ceedings of the First Annual Object-Oriented Numerics Conference, pages
268-269, 1993.

80

[22] A. Malony, B. Mohr, P. Beckman, D. Gannon, S. Yang, and F. Bodin. Per-
formance Analysis of pC-f+: A Portable Data-Parallel Programming Sys-
tem for Scalable Parallel Computers. In H.J. Siegel, editor, Proc. Eighth In-
ternational Parallel Processing Symposium. IEEE Computer Society Press,
April 1994.

[23] B. Mohr. Standardization of Event Traces Considered Harmful or Is an Im-
plementation of Object-Independent Event Trace Monitoring and Analysis
Systems Possible? In J.J. Dongarra and B. Tourancheau, editors, Proceed-
ings of the CNRS-NSF Workshop on Environments and Tools For Parallel
Scientific Computing, volume 6 of Advances in Parallel Computing, pages
103-124. Elsevier, September 1992.

[24] B. Mohr, D. Brown, and A. Malony. TAU: A Portable Parallel Program
Analysis Environment for pC++. In B. Buchberger and J. Volkert, editors,
Proceedings of CONPAR 94-VAPP VI, volume 854 of Lecture Notes in
Computer Science, pages 29-40. Springer-Verlag, September 1994.

[25] Object Management Group. The Common Object Request Broker: Archi-
tecture and Specification, Version 1.2 edition, December 1993.

[26] J. Ousterhout. Tel and the Tk Toolkit. Addison-Wesley, 1994.

[27] D.A. Reed, R.D. Olson, R.A. Aydt, T.M. Madhyasta, T. Birkett, D.W.
Jensen, A.A. Nazief, and B.K. Totty. Scalable Performance Environments
for Parallel Systems. In Proceedings of the 6th Distributed Memory Com-
puting Conference, pages 562-569. IEEE Computer Society Press, 1991.

[28] K. Shanmugam. Performance Extrapolation of Parallel Programs. Master's
thesis, University of Oregon, Department of Computer and Information
Science, June 1994.

[29] K. Shanmugam and A. Malony. Performance Extrapolation of Parallel
Programs. In C. Polychronopoulos, editor, Proceedings of the 1995 Inter-
national Conference on Parallel Processing (ICPP), volume II Software,
pages 117-120. CRC Press, August 1995.

[30] K. Shanmugam, A. Malony, and B. Mohr. Performance Extrapolation of
Parallel Programs. Technical Report CIS-TR-95-14, University of Oregon,
Department of Computer and Information Science, May 1995.

[31] B. Stroustrup. Parameterized Types for C++. In USENIX C++ Confer-
ence, Denver, October 1988.

[32] S. Yang, D. Gannon, S. Bodin, P. Bode, and S. Srinivas. High Performance
Fortran Interface to the Parallel C++. In Scalable High Performance Com-
puting Conference. IEEE, 1994.

81

«U.S. GOVERNMENT PRINTING OFFICE: 1998-610-130-61241

DISTRIBUTION LIST

addresses number
of copies

OR. RAYMOND A. LIUZII 10
AFRL/IFT3
525 BROOKS ROAD
ROME, NY 13441-4505

DENNIS GANNON
INDIANA UNIVERSITY
SPONSORED RESEARCH SERVICE
P.O. BOX 1847
3L00MINGT0N, IN 47405-4101

AFRL/IFOIL
TECHNICAL LIBRARY
26 ELECTRONIC PKY
ROME NY 13441-4514

ATTENTION: DTIC-OCC
DEFENSE TECHNICAL INFO CENTER.
8725 JOHN J. KINGMAN R0AQ» ST£ 0944
FT. SELVOIRt VA 22060-6213

DEFENSE ADVANCED RESEARCH
PROJECTS AGENCY
3701 NORTH FAIRFAX DRIVE
ARLINGTON VA 22203-1714

RELIABILITY ANALYSIS CENTER
201 MILL ST.
ROME NY 13440-8200

ATTN: GWEN NGUYEN
GIDEP
P.O. BOX 8000
CORONA CA 91715-8000

AFIT ACADEMIC LI8RARY/LDEE
2950.P STREET
AREA S, HLDG 642
WRIGHT-PATTERSON AF8 OH 45433-7765

DL-1

ATTN: GILBERT G. KUPERMAN
AL/CFHI, SLOG. 248
2255 H STREET
«RIGHT-PATTERSON AF8 OH 4-5433-7022

ATTN: TECHNICAL DOCUMENTS CENTER
OL AL H5C/HRG
2698 G STREET
WRIGHT-PATTERSON AFS OH 45433-7604

AIR UNIVERSITY LI3RARY (AUL/LSAO)
600 CHENNAULT CIRCLE
MAXWELL AFS AL 36112-6424

US ARMY SSDC
P.O. BOX 1500
ATTN: CSSD-IM-PA
HUNTSVILLE AL 35807-3801

TECHNICAL LIBRARY D0274CPL-TS)
SPAWARSYSCEN
53560 HULL STREET
SAM DIEGO CA 92152-5001

NAVAL AIR WARFARE CENTER
WEAPONS DIVISION
CODE 43LQQ0Q
1 ADMINISTRATION CIRCLE
CHINA LAKE CA 93555-6100

SPACE & NAVAL WARFARE SYSTEMS CMD
ATTN: PMW163-1 <R. SKIANO)RM 1044A
53560 HULL ST.
SAN DIEGO, CA 92152-5002

SPACE 5. NAVAL WARFARE SYSTEMS
COMMAND, EXECUTIVE DIRECTOR (PD13A>
ATTN: MR. CARL ANDRIANI
2451 CRYSTAL DRIVE
ARLINGTON VA 22245-5200

COMMANDER, SPACE £> NAVAL WARFARE
SYSTEMS COMMAND <CODE 32)
2451 CRYSTAL DRIVE
ARLINGTON VA 22245-5200

OL-2

CDR, US ARMY MISSILE COMMAND
REDSTONE SCIENTIFIC INFORMATION CTR
ATTN: AMSMI-RD-C5-R, DOCS
REDSTONE ARSENAL AL 35898-5241

ADVISORY GROUP ON ELECTRON DEVICES
SUITE 500
1745 JEFFERSON DAVIS HIGHWAY
ARLINGTON VA 22202

REPORT COLLECTION, CIC-14
MS P364
LOS ALAMOS NATIONAL LABORATORY
LOS ALAMOS NM 87545

AEOC LIBRARY
TECHNICAL REPORTS FILE
100 ONDEL DRIVE, SUITE C211
ARNOLD AF8 TN 37389-3211

COMMANDER
USftlSC
ASHC-IMD-L» 8LDG 61801
FT HUACHUCa A2 85613-5000

US OEPT OF TRANSPORTATION LIBRARY
F81ÖA, M-457, RM 930
300 INDEPENDENCE AVE, SW
WASH DC 22591

AWS TECHNICAL LIBRARY
859 BUCHANAN STREET, RM. 427
SCOTT ÄF8 IL 62225-5113

AFIWC/MSY
102 HALL 3LV0, STE 315
SAN ANTONIO TX 78243-7016

SOFTWARE ENGINEERING INSTITUTE
CARNEGIE MELLON UNIVERSITY
4500 FIFTH AVENUE
PITTSBURGH PA 15213

DL-3

Nsa/css
XI
FT MEAOE MO 20755-6000

ATTN: ÖM CHAUHAN
OCMC WICHITA
271 WEST THIRD STREET NORTH
SUITE 6000
WICHITA KS 67202-1212

AFRL/VSOS-TL CLIBRARY>
5 WRIGHT STREET
HANSCOM AF3 MA 01731-3004

ATTN: EILEEN LADUKE/D460
MITR5 CORPORATION
202 BURLINGTON RO
BEDFORD MA 01730

OUSO(P>/DTSA/DUTD
ATTN: PATRICK G. SULLIVAN, JR.
400 ARM* NAVY DRIVE
SUITE 300
ARLINGTON VA 22202

SOFTWARE £NGR*G INST TECH LIBRARY
ATTN: MR DENNIS SMITH
CARNEGIE MELLON UNIVERSITY
PITTSBURGH PA 15213-3390

USC-ISI
ATTN: OR ROBERT M. 8AL2ER
4676 ADMIRALTY WAY
MARINA DEL REY CA 90292-6695

KESTREL INSTITUTE
ATTN: DR CORDELL GREEN
1301 PAGE MILL ROAD
5>ALO ALTO CA 94304

ROCHESTER INSTITUTE OF TECHNOLOGY
ATTN: PROF J. A. LASKY
1 LOM8 MEMORIAL DRIVE
P.O. 80X 9337
ROCHESTER NY 14613-5700

DL-4

AFIT/ENG
ATTN:TOM HARTRUM
WPAF3 OH 45433-6583

THE MITRE CORPORATION
ATTN: MR EDWARD H. BENSLEY
BURLINGTON RO/MAIL STOP A350
BEDFORD MA 0173Q

UNIV OF ILLINOIS» URBANA-CHAMPAIGN
ATTN: ANDREM CHIEN
OEPT OF COMPUTER SCIENCES
1304 W. SPRINGFIELD/240 DIGITAL LA3
UR8ANA IL 61901

HONEYWELL. INC.
ATTN: MR 3ERT HARRIS
FEDERAL SYSTEMS
7900 WESTPARK DRIVE
MCLEAN VA 22102

SOFTWARE ENGINEERING INSTITUTE
ATTN: MR WILLIAM £• HSFLEY
CARNEGIE-MELLON UNIVERSITY
SEI 2218
PITTSBURGH PA 15213-33990

UNIVERSITY OF SOUTHERN CALIFORNIA
ATTN: DR, YIGÄL ARENS
INFORMATION SCIENCES INSTITUTE
4676 ADMIRALTY WAY/SUITE 1001
MARINA DEL RET CA 90292-6695

COLUMBIA UNIV/DEPT COMPUTER SCIENCE
ATTNJ OR GAIL E. KAISER
450 COMPUTER SCIENCE 3LDG
500 WEST 120TH STREET
NEW YORK NY 10027

SOFTWARE PRODUCTIVITY CONSORTIUM
ATTN: MR ROBERT LAI
2214 ROCK HILL ROAD
HERNDON VA 22070

AFIT/ENG
ATTN: OR GARY S. LAMONT
SCHOOL OF ENGINEERING
OEPT ELECTRICAL £ COMPUTER ENGRG
WPAF3 OH 45433-6583

DL-5

N5A/QFC OF RESEARCH
ATTN: MS MARY ANNE OVERMAN
9800 SAVAGE ROAD
FT GEORGE G. MEADE MO 20755-6000

AT&T SELL LABORATORIES
ATTN: MR PETER G. SELFRIOGE
ROOM 3C-441
Ö00 MOUNTAIN AVc
MURRAY HILL NJ 07974

ODYSSEY RESEARCH ASSOCIATES, INC.
All Hi MS MAUREEN STILLMAN
301A HARRIS 8- DATES DRIVE
ITHACA NY 14850-1313

TEXAS INSTRUMENTS INCORPORATED
ATTN: OR DAVID L. WELLS
P.O. SOX 655474, MS 238
DALLAS TX 75265

TEXAS A & M UNIVERSITY
ATTN: OR PAULA MAYER
KNOWLEDGE BASED SYSTEMS LABORATORY
OEPT OF INDUSTRIAL ENGINEERING
COLLEGE STATION TX 77843

KESTREL DEVELOPMENT CORPORATION
ATTN: 0» RICHARD JULLIG
3260 HILLVIEW AVENUE
PALO ALTO CA 94304

DARPA/ITO
ATTN: OR KIRSTIE BELLMAN
3701 N FAIRFAX DRIVE
ARLINGTON VA 22203-1714

NASA/JOHNSON SPACE CENTER
ATTN: CHRIS CULBERT
MAIL CODE PT4
HOUSTON TX 77058

SAIC
ATTN: LANCE MILLER
MS Tl-6-3
PO BOX 130 3 COR 1710 GOODRIOGE OR)
MCLEAN VA 22102

OL-6

STERLING IMD INC.
KSC OPERATIONS
ATTN: MARK MAGINN
BEECHES TECHNICAL CAMPUS/RT 26 N.
ROME NY 13440

NAVAL POSTGRADUATE SCHOOL
ATTN: 8ALA RAGESH
CODE AS/RS
ADMINISTRATIVE SCIENCES DEPT
MONTEREY C» 93943

HUGHES SPACE t COMMUNICATIONS
ATTN: GERRY 8ARKSDALE
P. 0. BOX 92919
8L0G Rll MS M352
LOS ANGELES, CA 90009-2919

SCHLUM8ERGER LABORATORY FOR
COMPUTER SCIENCE

ATTN: OR. GUILLERMO ARANGO
8311 NORTH FM620
AUSTIN, TX 78720

DECISION SYSTEMS DEPARTMENT
ATTN: PROF WALT SCACCHI
SCHOOL OF BUSINESS
UNIVERSITY OF SOUTHERN CALIFORNIA
LOS ANGELES, CA 90089-1421

SOUTHWEST RESEARCH INSTITUTE
ATTN: BRUCE REYNOLDS
6220 CULE3RA ROAD
SAN ANTONIO, TX 78228-0510

NATIONAL INSTITUTE OF STANDARDS
AND TECHNOLOGY

ATTN: CHRIS DA8R0WSKI
ROOM A266, BLDG 225
GAITHS3URG MD 20899

EXPERT SYSTEMS LABORATORY
ATTN: STEVEN H. SCHWARTZ
NYNEX SCIENCE £ TECHNOLOGY
500 WESTCHESTER AVENUE
WHITE PLAINS NY 20604

NAVAL TRAINING SYSTEMS CENTER
ATTN: ROBERT BREAUX/CODE 252
12350 RESEARCH PARKWAY
ORLANDO FL 32826-3224

OL-7

CENTER FOR EXCELLENCE IN COMPUTER-
AIDED SYSTEMS ENGINEERING

ATTN: PERRY ALEXANDER
2291 IRVING HILL ROAD
LAWRENCE KS 66049

OR JOHN SALASIN
DARPA/ITQ
3701 NORTH FAIRFAX DRIVE
ARLINGTON VA 22203-1714

DR 3ARRY SDEHM
DIR, USC CENTER FOR SW ENGINEERING
COMPUTER SCIENCE OEPT
UNIV OP SOUTHERN CALIFORNIA
LOS ANGELES CA 90089-0781

OR STEVE CROSS
CARNEGIE MELLON UNIVERSITY
SCHOOL OF COMPUTER SCIENCE
PITTSBURGH PA 15213-3891

OR MARK MAY3URY
MITRE CORPORATION
ADVANCED INFO SYS TECH; G941
BURLINTON ROAD, M/S K-329
BEDFORD MA 01730

ISX
ATTN: MR. SCOTT FOUSE
4353 PARK TERRACE DRIVE
WESTLAKE VILLAGE,CA 91361

MR GARY EDWARDS
ISX
433 PARK TERRACE DRIVE
WESTLAKE VILLAGE CA 91361

OR EO WALKER
38N SYSTEMS i TECH CORPORATION
10 MOULTON STREET
CAMBRIDGE MA 02233

LEE ERMAN
CIMFLEX TEKNOULEOGE
1810 EMBACAOERO ROAD
P.O. BOX 10119
PALO ALTO CA 94303

DL-3

OR. DAVE GUNNING
DARPA/ISO
3701 NORTH FAIRFAX DRIVE
ARLINGTON VA 22203-1714

DAN WELD
UNIVERSITY OF WASHINGTON
DEPART OF COMPUTER SCIENCE & ENGIN
30X 352350
SEATTLE, WA 93195-2350

STEPHEN SÖOERLAND
UNIVERSITY OF WASHINGTON
OEPT Q? COMPUTER SCIENCE S. ENGIN
BOX 352350
SEATTLE, WA 98195-2350

OR. MICHAEL PITTARELLI
COMPUTER SCIENCE DEPART
SUNY INST OF TECH AT UTICA/ROME
P.O. BOX 3050
UTICA, NY 13504-3050

CAPRARO TECHNOLOGIES, INC
ATTN: GERARD CAPRARO
311 TURNER ST.
UTICA, NY 13501

USC/ISI
ATTN: 303 MCGREGOR
4676 ADMIRALTY WAY
MARINA DEL REY, CA 90292

SRI INTERNATIONAL
ATTN: ENRIQUE RUSPINI
333 RAVSNSWOQO AVE
MENLO PARK, CA 94025

DARTMOUTH COLLEGE
ATTN: DANIELA RUS
OEPT 0~ COMPUTER SCIENCE
11 ROPE FERRY ROAD
HANOVER, NH 03755-3510

UNIVERSITY OF FLORIDA
ATTN: ERIC HANSON
CISE DEPT 456 CSE
GAINESVILLE, FL 32611-6120

DL-9

CARNEGIE MELLON UNIVERSITY
ATTN? TOM MITCHELL
COMPUTER SCIENCE DEPARTMENT
PITTSBURGH, PA 15213-3890

CARNEGIE MELLON UNIVERSITY
ATTN: MARK CRAVEN
COMPUTER SCIENCE DEPARTMENT
PITTSBURGH, PA 15213-3890

UNIVERSITY OF ROCHESTER
ATTN: JAMES ALLEN
DEPARTMENT OF COMPUTER SCIENCE
ROCHESTER, NY 14627

TEXTWISE, LLC
ATTN: LIZ LIODY
2-121 CENTER FOR SCIENCE £ TECH
SYRACUSE, NY 13244

WRIGHT STATE UNIVERSITY
ATTN: DR. 8SÜCE 8ERRA
DEPART OF COMPUTER SCIENCE £ SNGIN
DAYTON, OHIO 45435-OQQt

UNIVERSITY OF FLORIDA
ATTN: SHARMA CHAKRAVARTHY
COMPUTER & INFOR SCIENCE DEPART
GAINESVILLE, FL 32622-6125

KESTREL INSTITUTE
ATTN: DAVID ESPINOSA
3260 HILLVISW AVENUE
PALO ALTO, CA 94304

STOLLER-HENKE ASSOCIATES
ATTN: T.J, GOAN
2016 3ELLE MONTI AVENUE
3ELM0NT, CA 94002

USC/INFORMATION SCIENCE INSTITUTE
ATTN: DR. CARL KESSELMAN
11474 ADMIRALTY WAY, SUITE 1001
MARINA DEL REY, CA 90292

DL-10

MASSACHUSETTS INSTITUTE OF TECH
ATTN: DR. MICHAELS SIEGEL
SLOAN SCHOOL
77 MASSACHUSETTS AVENUE
CAMBRIDGE, MA 02139

USC/INFORMftTIQN SCIENCE INSTITUTE
ATTN: DR. WILLIAM SWARTHOUT
11474 ADMIRALTY WAY» SUITE 1001
MARINA DEL REY, CA 90292

STANFORD UNIVERSITY
ATTN: DR. GIO WIEDERHOLD
957 SIERRA STREET
STANFORD
SANTA CLARA COUNTY, CA 94305-4125

NCCQSC RDTE DIV 044208
ATTN: LEAH WONG
53245 PATTERSON ROAD
SAN DIEGO, CA 92152-7151

SPAWAR SYSTEM CENTER
ATTN: LES ANDERSON
271 CATALINA 8LVD, CODE 413
SAN DIEGO CA 92151

GEORGE MASON UNIVERSITY
ATTN: SUSHIL JAJODIA
ISSE DEPT
FAIRFAX, VA 22030-4444

DIRNSA
ATTN: MICHAEL R. WARE
DOD, NSA/CSS CR23)
FT. GEORGE G. MEADE «D 20755-6000

OR. JIM RICHARDSON
3660 TECHNOLOGY DRIVE
MINNEAPOLIS, MN 55418

LOUISIANA STATE UNIVERSITY
COMPUTER SCIENCE DEPT
ATTN: Q^. PETER CHEN
257 COATES HALL
BATON ROUGE, LA 70803

DL-11

INSTITUTE OF TECH DEPT OF COMP SCI

ATTN: DP. JAIDEEP SRIVASTAVA
4-192 EE/CS
200 UNION ST SE
MINNEAPOLIS, MN 55455

GTE/S3N
ATTN: MAURICE M. MCNEIL
9655 GPANITE RIDGE DRIVE
SUITE 245
SAN DIEGO, CA 92123

UNIVERSITY OF FLORIDA
ATTN: DR. SHARMA CHAKRAVARTHY
E470 CSE BUILDING
GAINESVILLE, FL 32611-6125

DL-12

